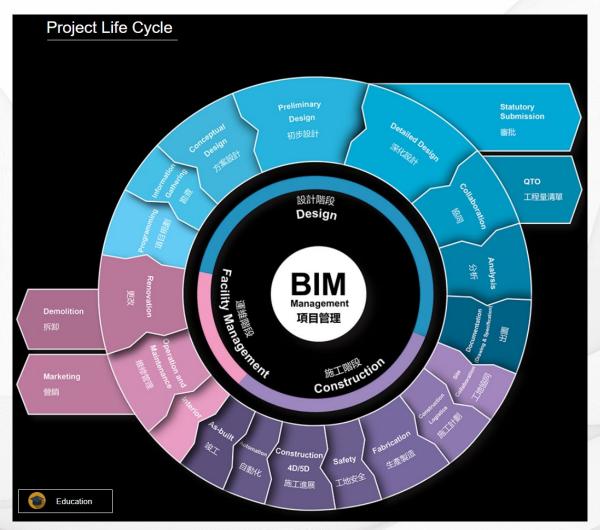
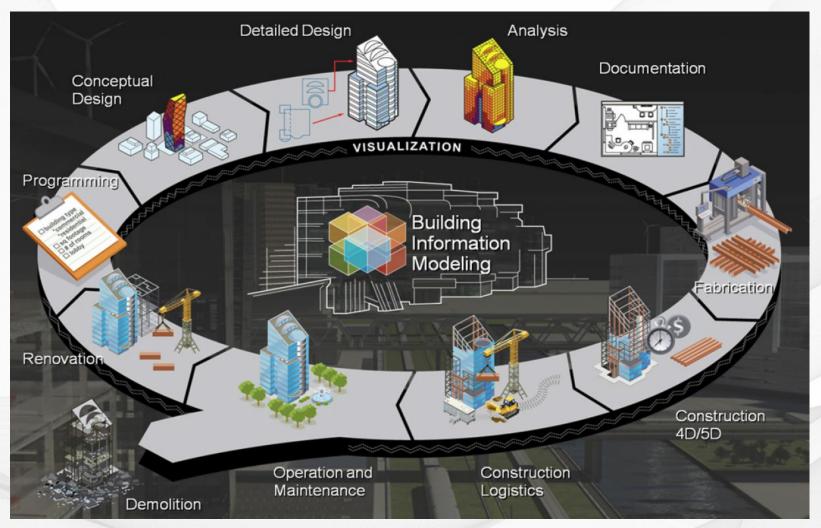


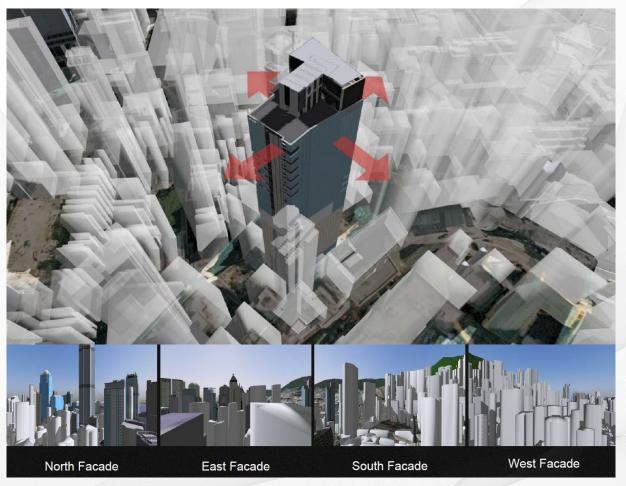
Advanced Construction Information Development Ltd.


BIM – Management Training

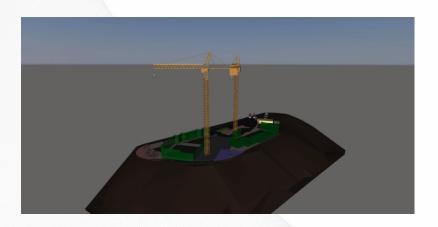
David Fung

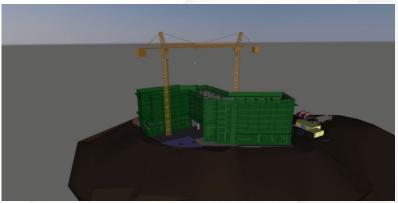

Registered Architect, HKIA
Managing Director, A.C.I.D.
Immediate past Chairman, HKIBIM
Assistant Professor, Department of Architecture, Chuhai College

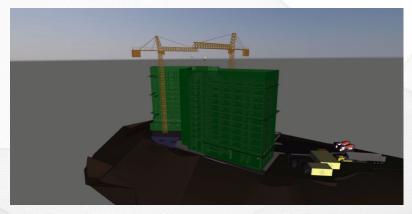
Day 1 - Introduction (Full Day)

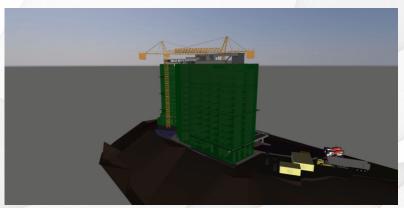

1. Correct Concept of BIM

An Information Flow throughout Project Life Cycle

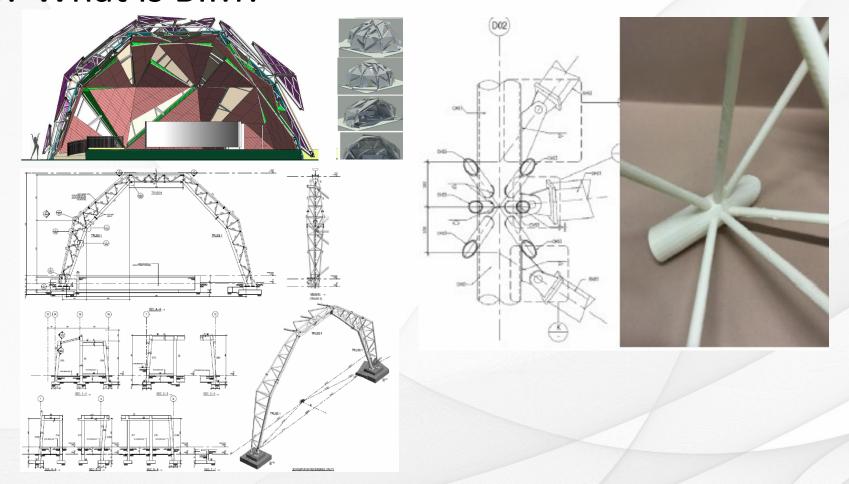



About Life Cycle, Information management method

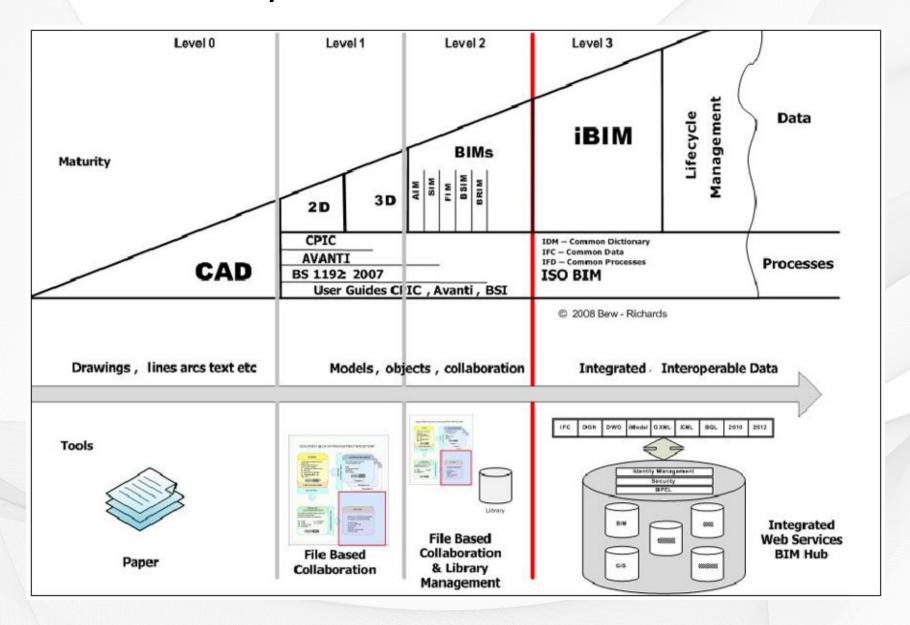


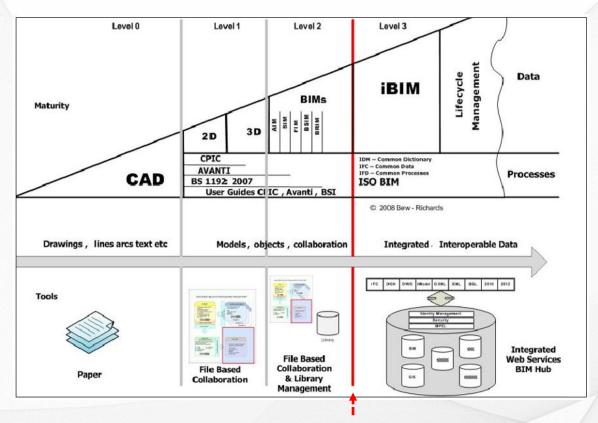

About Rehearsal in the Virtual World

- To simulate surrounding environment for sightline, weather, traffic analysis
- To design a building / complex within a virtual environment with information



Rehearsal 3D, time, cost


- To review design in response to time management and construction sequence.
- A better way to resolve the discrepancy in the virtual world before construction.

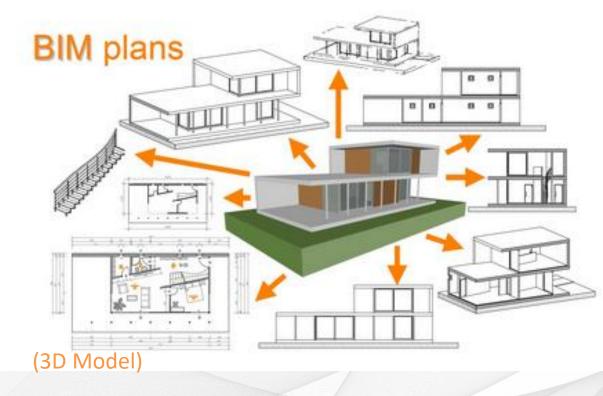

About Rehearsal Design, Details and Construction

- To develop the design from schematic to details in the virtual world with different discipline profession
- Single Source of Ture (SSOT) ensure the consistence during the project development

6. BIM Maturity?

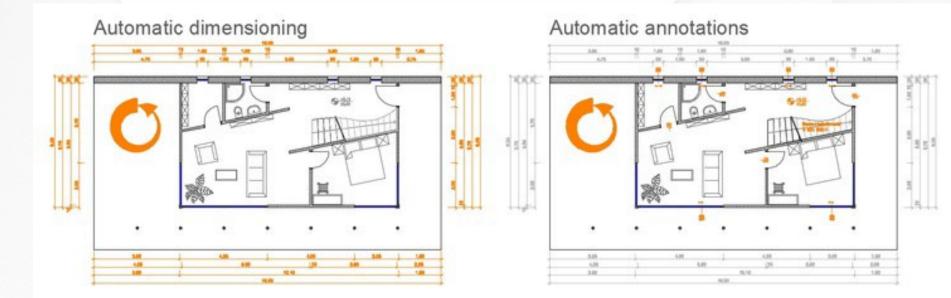
7. UK - PAS 1192-2

From CAD to BIM Level


- Level 0 Drawings from CAD, line areas & text
- Level 1 2D & 3D basic element
- Level 2 2D & 3D models, objects, collaboration (Currently in 2018)
- Level 3 with ISO BIM, use full of BIM

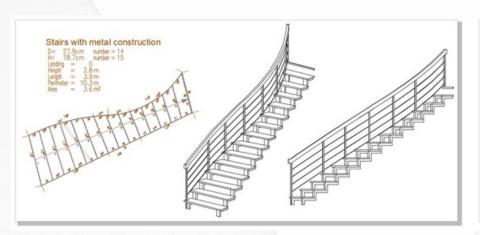
8. 3D CAD is BIM?

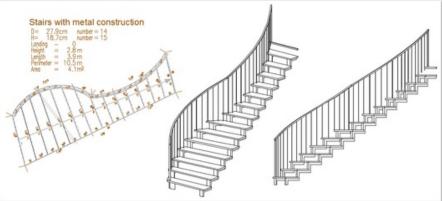
CAD


- Drafting in 2D
- No Information
- Many sources

BIM

- In 2D and 3D
- Information contained
- Single Source of Truth (SSOT)


9. BIM with Information?



SSOT with Automation

- All element contain information
- Eg. Dimension and annotations can be automated
- Windows and doors are divided in different family with information which can be automated within the same model

10. BIM as Design Tools

SSOT with Model Information

- Change of design will be synchronized at one source
- Eg. Dimension and annotations can be automated
- All Plans, section & elevation will be synchronized at the same time

11. BIM as Virtual Simulation Tools

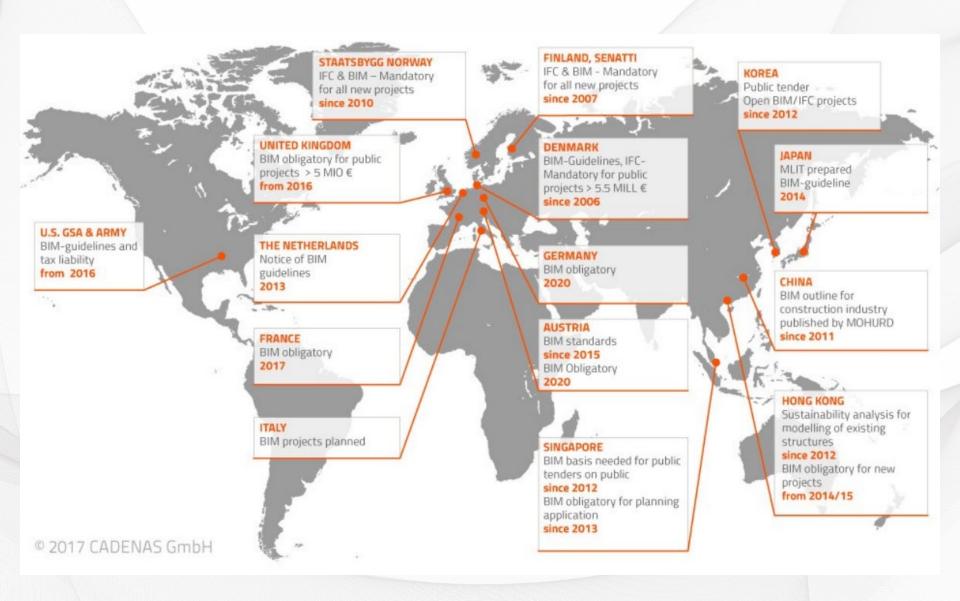
SSOT with Simulation

- The location of model contained weather information
- Eg. Sunlight Analysis, solar gain

12. BIM Software Overview Experience

R Autodesk Revit

Aecosim Building Designer



Graphisoft ArchiCAD

13. Global BIM & Development

14. BIM Development

Hong Kong
2002 / 10
Autodesk Revit Launch

Beijing BIM trip 2005 / 06

15. BIM Development

Seoul BIM Talk 2007 / 04

Hong Kong BIM Delegates

Singapore BCA 2011 / 08

Singapore Delegates visit to HK

16. BIM Development

UDC

中华人民共和国国家标准

P

GB/T 51269-2017

建筑信息模型分类和编码标准

Standard for classification and coding of building information model

2017-10-25 发布

2018-05-01 实施

中华人民共和国住房和城乡建设部 中华人民共和国国家质量监督检验检疫总局 联合发布

China Government 2017

2020 BIM use in 90%

香港特別行政區政府

The Government of the Hong Kong Special Administrative Region

政府總部 發展局 工務科

Works Branch Development Bureau Government Secretaria

18/F, West Wing, Central Government Offices, 2 Tim Mei Avenue, Tamar, Hong Kong

ef : DEVB(W) 430/80/01

Group : 2, 5, 6

1 December 2017

Development Bureau
<u>Technical Circular (Works) No. 7/2017</u>

Adoption of Building Information Modelling for Capital Works Projects in Hong Kong

Scope

This Circular sets out the policy and requirements on the adoption of Building Information Modelling (BIM) technology.

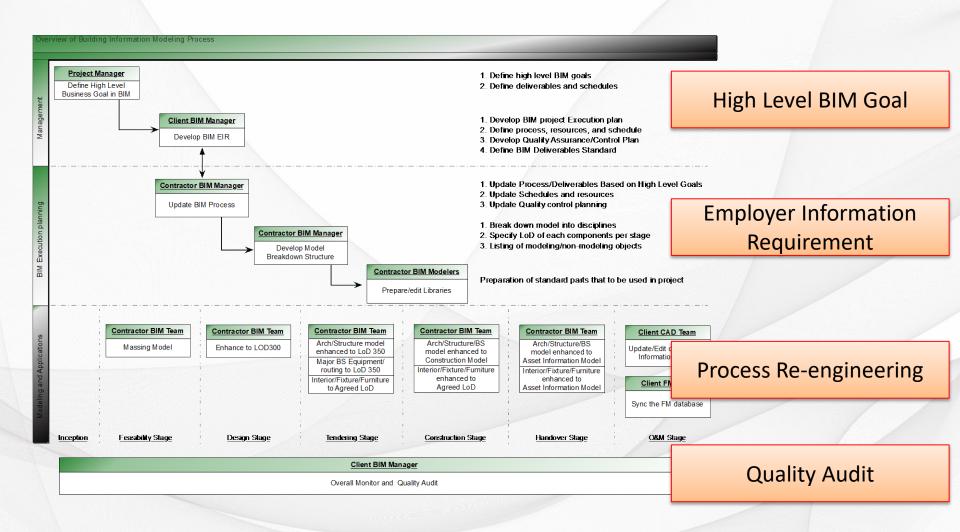
2. This Circular applies to works either by in-house government staff, consultants or contractors.

Effective Date

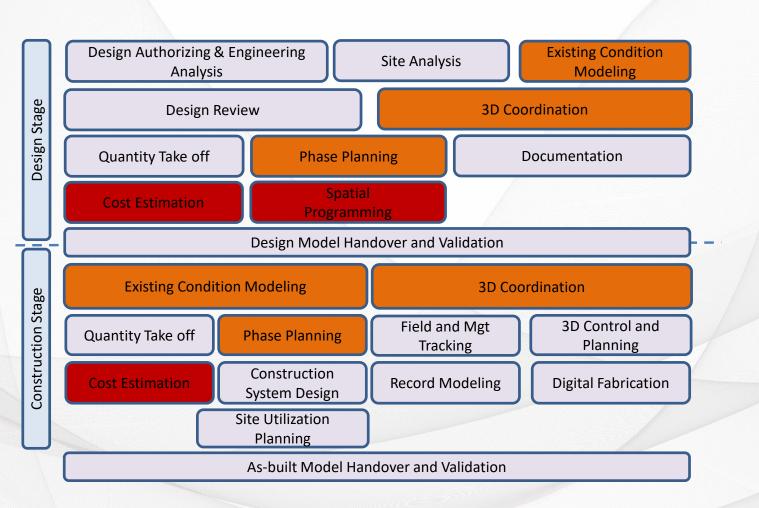
This Circular takes effect on <u>1 January 2018</u>

Effect on Existing Circulars and Circular Memoranda

This Circular has no effect on existing circulars.


DEVB TC(W) No. 7/2017

Page 1 of 10


Hong Kong 2017 / 05

2018 January onward

17. BIM Execution Process

18. High level BIM Goals

Mandate Easy

Mandate Medium

Optional Difficult

19. Formulation of BIM strategy and standards

Policy Address

III. Diversified Economy

Construction and Related Professional Services Sectors

- 111. For the Hong Kong construction sector, the Belt and Road Initiative has brought visions while the Guangdong-Hong Kong-Macao Bay Area initiative has generated concrete opportunities and made it easier to achieve results.
- 112. The Mainland and Hong Kong signed an Agreement on Economic and Technical Co-operation under the Closer Economic Partnership Agreement (CEPA) on 28 June 2017, which expressly supports Hong Kong's participation in the development of pilot Free Trade Zones. The Government will capitalise on the new opportunities and continue to assist the construction and related professional services sectors in their business development in the Mainland. The Government will also deepen the co-operation with Qianhai, Hengqin and Nansha in accordance with the Agreement signed in June 2017. We will continue to discuss with the Mainland various issues such as mutual recognition of professional qualifications, rationalisation of the work of "professionals" and "practitioners", and promote the "Hong Kong management model" already adopted in Qianhai to other Free Trade Zones.
- 113. The construction industry has been facing the challenges of high construction costs and labour shortage in recent years. Hence, the Government is proactively promoting the adoption of technology and innovative construction methods to improve productivity and cost-effectiveness. For instance, the Government is assisting the industry in establishing large-scale and highly automated steel reinforcing bar prefabrication plants for the production of prefabricated steel reinforcement components for use in construction projects. We will also adopt Building Information Modelling technology in the design and construction of major government capital works projects that are scheduled to start in 2018, and promote the use of this technology in private construction projects. Besides, the new Construction Innovation and Technology Application Centre of the Construction Industry Council will be in operation by the end of this year to provide the latest information on local and overseas construction technologies and to support their adoption by small and medium enterprises.

香港特別行政區政府

The Government of the Hong Kong Special Administrative Region

政府總部 發展局 工務科

Works Branch Development Bureau Government Secretariat

香港添馬添美道2號 政府總部西翼18樓 18/F, West Wing, Central Government Offices, 2 Tim Mei Avenue, Tamar, Hong Kong

Ref : DEVB(W) 430/80/01

Group: 2, 5, 6

1 December 2017

Development Bureau Technical Circular (Works) No. 7/2017

Adoption of Building Information Modelling for Capital Works Projects in Hong Kong

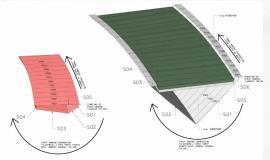
Scope

This Circular sets out the policy and requirements on the adoption of Building Information Modelling (BIM) technology.

This Circular applies to works either by in-house government staff, consultants or contractors.

Effective Date

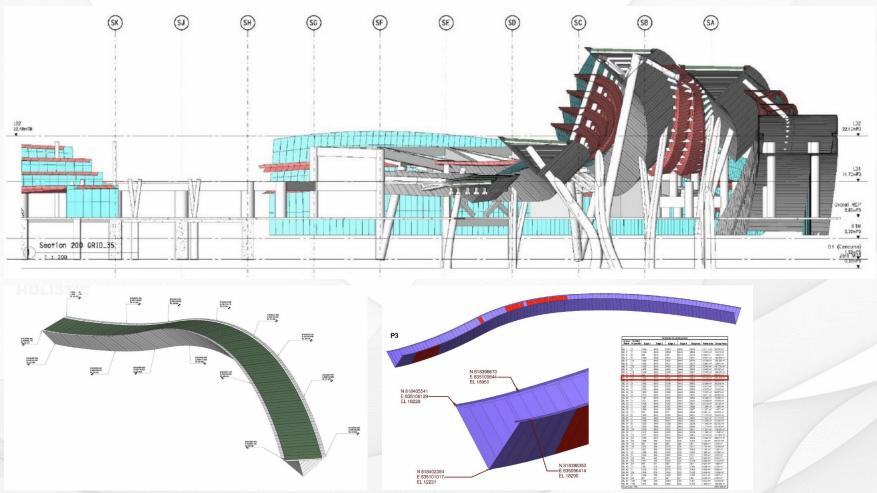
This Circular takes effect on <u>1 January 2018</u>.


Effect on Existing Circulars and Circular Memoranda

This Circular has no effect on existing circulars.

DEVB TC(W) No. 7/2017 Page 1 of 10

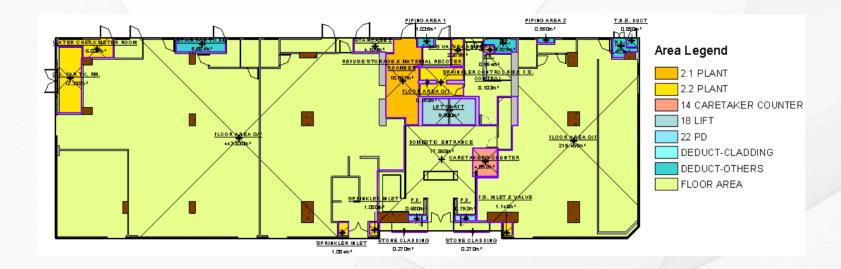
20. Details Design



 Each panel contained information including size, location & coordinate

SSOT to improve detail design

Project : West Kowloon Station


21. Details Design

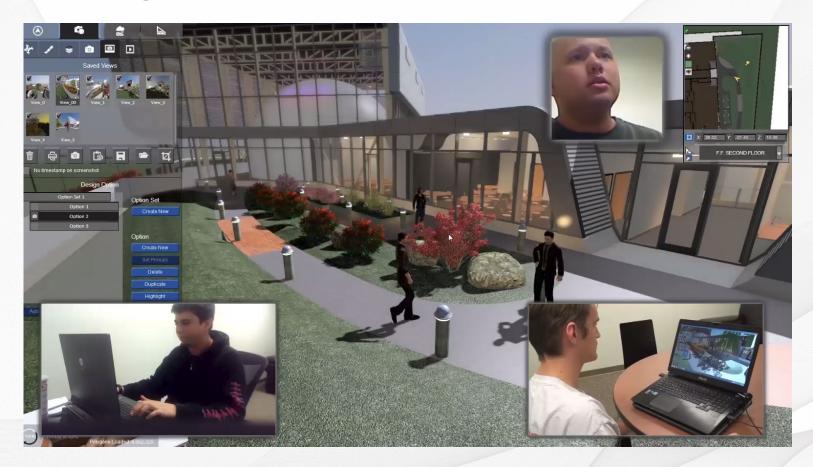
SSOT to improve detail design

Project: West Kowloon Station


22. General Buildings Plan Submission

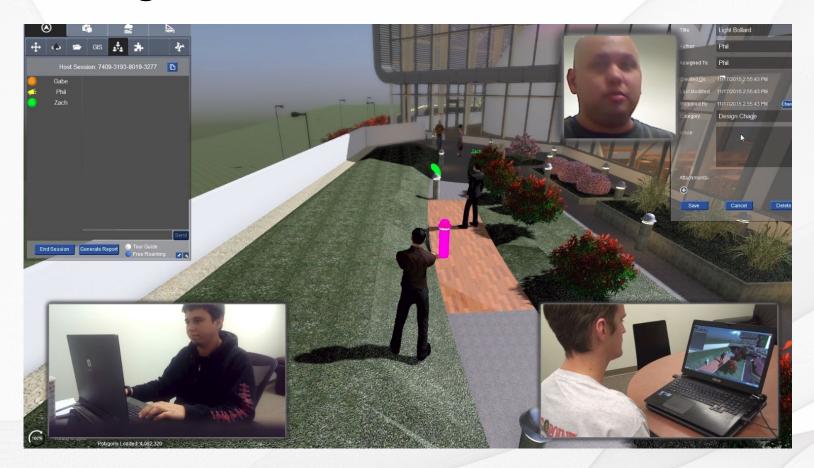
SSOT to improve GBP Submission

- Information Modeling enhance the consistency of the project
- Time saving for project operation


23. General Buildings Plan Submission

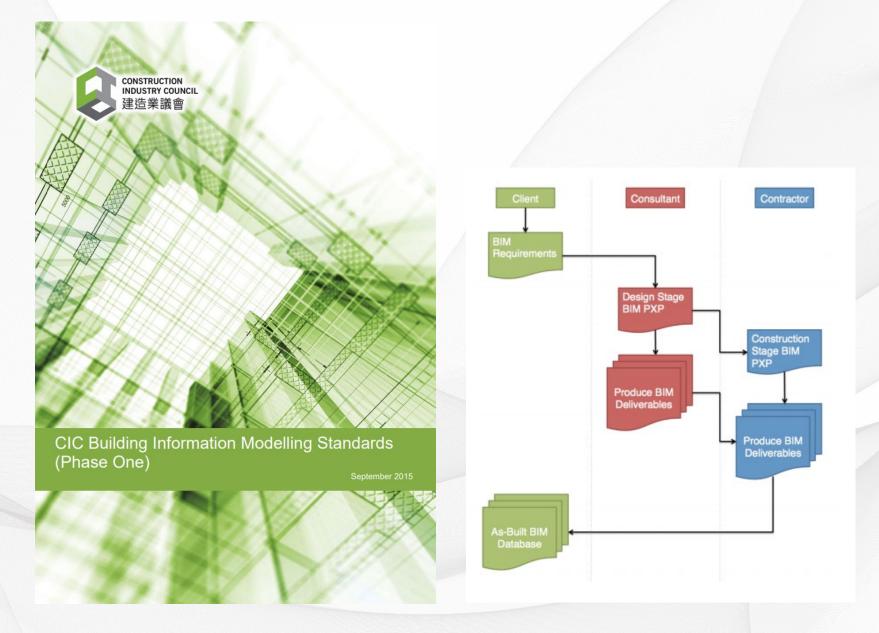
SSOT to improve GBP Submission

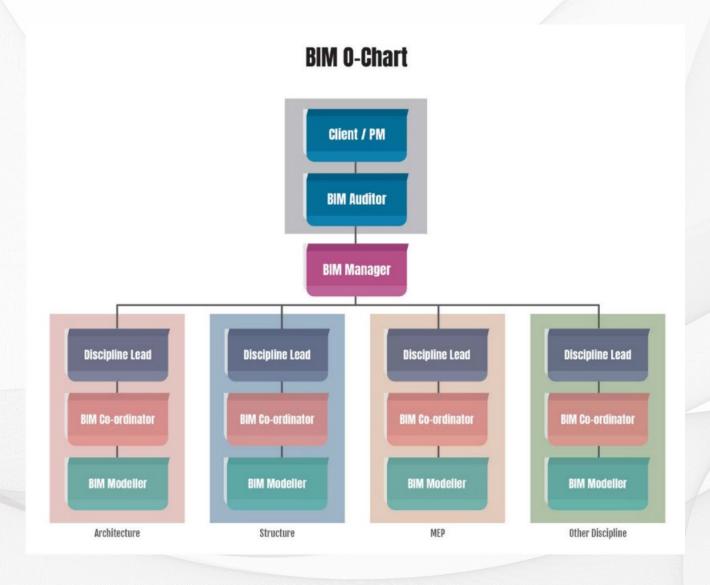
- Information Modeling enhance the consistency of the project
- Time saving for project operation


24. Design Review and 3D Coordination

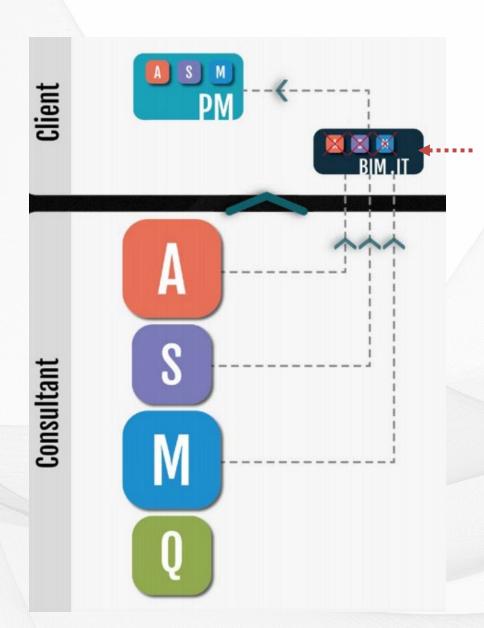
SSOT to improve Coordination

- Plugin software to simulate the virtual environment
- Different discipline can involve and revise the design at the same time


25. Design Review and 3D Coordination


SSOT to improve Coordination

- Plugin software to simulate the virtual environment
- Different discipline can involve and revise the design at the same time


26. Introduction of CIC's BIM Standards

27. Introduction of CIC's BIM Standards

28. Low level BIM

Inefficient Workflow

- Architect, Structural Engineer & Buildings Services Engineer to produce drawings by CAD and deliver to BIM Consultants.
- BIM Consultants as a Modeler and Coordinator to handle all the architectural, structural and MEP as one body.

Inefficient Result

- Workload for Architect, Structural Engineer
 & Buildings Services Engineer have been duplicated from CAD to 3D.
- Most of the clash problem cannot be resolved since the modeler ae not professional body with no liability.
- The BIM result with no value for the projects.

29. Low level BIM Quotation Example

BIM Modeling services

2.1 Architecture and Structure Modeling Package

- To develor Architecture and Structure BIM models based on CAD drawings particled by Client according to BIM Requirement Specification for clash analysis and constructability review.
- Modeling duration: 2 weeks
- Deliverable: Architecture and Structure model for the basement carparks (including B1/F and B2/F) and podium for clubhouse and residential entrance lobbies (including G/F and 1/F) in Autodesk Revit Format

2.2 Detail M&E Modeling Package

- To develop detail M&E BIM models for all areas based on CAD drawings provided by Client according to BIM Requirement Specification for clash analysis and constructability review
- Modeling duration: 2 weeks
- Deliverable: Detail M&E model for the basement carparks (including B1/F and B2/F) and podium for clubhouse and residential entrance lobbies (including G/F and 1/F) in Autodesk Revit Format

2.3 Update Architecture and Structure Modeling Package (Maximum 5 times)

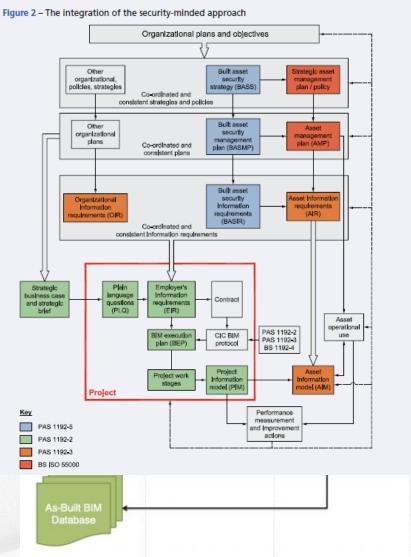
- To update Architecture and Structure BIM models based on updated CAD drawings provided by Client according to BIM Requirement Specification for clash analysis and constructability review
- Modeling duration: 1 week
- Deliverable: Updated Architecture and Structure model for the basement carparks (including B1/F and B2/F) and podium for clubhouse and residential entrance lobbies (including G/F and 1/F) in Autodesk Revit Format

3. Project Management Services

- To manage BIM documentation systematically to ensure quality of data
- To provide BIM/ CAD manager off-site with the following scope of works
 - To develop BIM project execution plan
 - To develop clash analysis and constructability review matrix
 - To develop systematic procedures for quality assurance, BIM model review and inspect information flow, BIM modeling process, clash analysis process and technical query reporting process.
 - To perform clash analysis based on clash analysis and constructability review matrix
 - To prepare 2D views for example 2D section(s), 3D section(s) from integrated BIM model as requested by Client
 - To prepare technical query of clashes detected and report to the Project team
 - To coordinate with Project team to resolve the clashes detected
 - To attend meetings when request by client and coordinate with Project team in the meetings
 - To assess, control and assure the quality of BIM deliverables
 - To report on project progress and issues
 - To deliver BIM deliverables such as BIM models, Technical Query, Model Progress Report, CSD, CBWD in Autodesk Revit Format and other relevant documents to the main contractor for smooth transition of the information and models.

Drawings produced by CAD Base

 Workload for Architect, Structural Engineer & Buildings Services Engineer have been duplicated from CAD to 3D

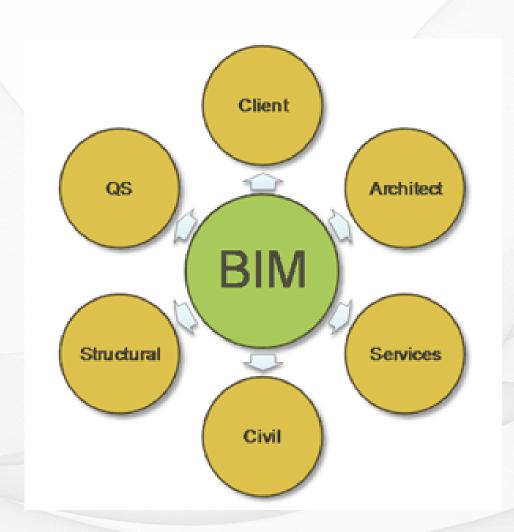

Clash Analysis

- Most of the clash problem cannot be resolved since the modeler ae not professional body with no liability.
- The BIM result with little value for the projects.

30. UK BIM Standards



31. High level BIM


Better Result

- A BIM Manager to assess the BIM deliverable on each party time to time.
- Minimize the risk for variation order since all information are simulate in the BIM.

Efficient BIM workflow

- Architect, Structural Engineer, Buildings Services Engineer & QS to input in BIM directly in order to generate drawings, schedules and information.
- Each party have an independent BIM Coordinator to ensure the model is well coordinated.
- Clash result can be resolved during the details design process since all information is contained in earlier stage.

32. Basic concept, advantages and limitations of BIM design process

33. Basic concept, advantages and limitations of BIM design process

34. Basic concept, advantages and limitations of BIM design process

BIM ADVANTAGES

- 3D collaboration with all members of the team with automated detection of clashes. e.g. Is the service void designed by the architect sufficient for the M&E services.
- Visualization of projects to enable greater understanding of all members of the team. For example, it is far easier to schedule scaffolding requirements looking at a 3D model than in 2D.
- 4D visualization i.e. linking the 3D model to the programme to explore logistics.
- Faster to incorporate change into a Revit (3D) CAD layout as no need to update loads of individual drawings.
- 5D potential introducing costs into elements of model e.g electronic drawing take-off.
- Ability to incorporate additional information into model elements e.g maintenance and life span information for Facilities Management or sustainability information, etc

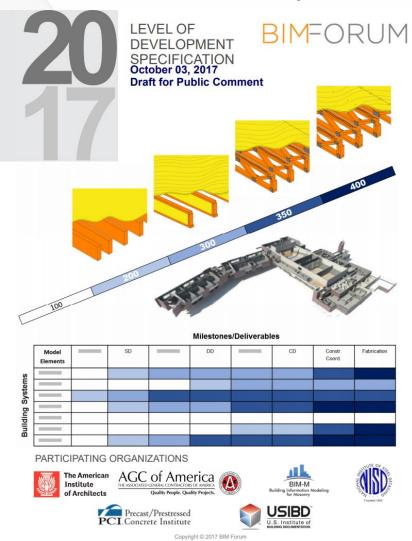
35. Basic concept, advantages and limitations of BIM design process

BIM DISADVANTAGES

- To be effective you need all major members of design team on significantly earlier than is often the case.
- BIM is more of a philosophy and not just a piece of software. Many people don't understand this. Construction is often slow to understand and embrace change.
- New protocols will be needed for managing information transfer and commenting, potentially new roles such as BIM Coordinators (much more than a document handler)
- Problems over information ownership and design responsibility within the model.

36. Introduction of CIC's BIM Standards

Contents


Contents

FOR	REWORD	4
DEF	FINITION OF ABBREVIATION	6
	RODUCTION	
1.0	PROJECT EXECUTION PLANNING	10
1.1	CLIENT REQUIREMENT SPECIFICATION	11
1.2		
1.3	TENDER STAGE BIM PXP	13
1.4	CONSTRUCTION STAGE BIM PXP	14
1.5	BIM PXP CONTENTS	15
	1.5.1 PROJECT INFORMATION	15
	1.5.2 CLIENT BIM REQUIREMENTS	15
	1.5.3 BIM MANAGEMENT	21
	1.5.4 BIM Process	24
	1.5.5 BIM Procedures	29
	1.5.6 IT HARDWARE & SOFTWARE SOLUTIONS	34
2.0	MODELLING METHODOLOGY	35
2.1	DISCIPLINE MODELLING GUIDELINES	37
	2.1.1 SITE MODELLING GUIDELINES	37
	2.1.2 Architectural Modelling Guidelines	37
	2.1.3 STRUCTURAL MODELLING GUIDELINES	38
	2.1.4 Building Services (MEP) Modelling Guidelines	39
	2.1.5 UTILITIES MODELLING GUIDELINES	40
2.2	MODEL SET-UP REQUIREMENTS	41
	2.2.1 BIM Model Zones	41
	2.2.2 BIM Project Co-ordinates	41
2.3	COLLABORATION PROCEDURES	43
	2.3.1 Collaboration Standards	43
	2.3.2 FEDERATED MODEL CREATION	43
	2.3.3 FACILITATING BIM COORDINATION	44
3.0	LEVEL OF DEVELOPMENT	45
3.1	LOD DEFINITIONS	46
	3.1.1 LOD EXPLAINED BY EXAMPLE	47
3.2	LOD RESPONSIBILITY MATRIX	48

Phase one included:

- Project Execution Planning
- Client Requirement Specification
- Design & Tender Stage BIM PXP
- Construction Stage BIM PXP
- BIM PXP Contents
- Modelling Methodology
- Discipline Modelling Guidelines
- Model Set-up Requirements
- Collaboration Procedures
- Level of Development
- LOD Definitions
- LOS Responsibility Matrix
- LOD Speification
- Component Presentation Style & Data Organisation
- Folder Structures
- Model Hierarchy & Data Structures
- Drawing Production
- Reference

37. Definition and requirements of LOD (Level of Development)

3.1 LOD Definitions

LOD notations are comprised of numbers from LOD 100 to LOD 500 and are defined as follows:-

LOD 100 The Model Element may be graphically represented in the Model with a

symbol or other generic representation.

Information related to the Model Element (i.e. cost per square foot, tonnage

of HVAC, etc.) can be derived from other Model Elements.

LOD 200 The Model Element is graphically represented within the Model as a **generic**

system, object, or assembly with approximate quantities, size, shape,

location, and orientation.

LOD 300 The Model Element is graphically represented within the Model as a **specific**

system, object or assembly in terms of quantity, size, shape, location, and

orientation.

LOD 350 The Model Element is graphically represented within the Model as a specific

system, object, or assembly in terms of quantity, size, shape, orientation, and

interfaces with other building systems.

LOD 400 The Model Element is graphically represented within the Model as a specific

system, object or assembly in terms of size, shape, location, quantity, and orientation with detailing, fabrication, assembly, and installation

information.

LOD 500 The Model Element is a **field verified representation** in terms of size,

shape, location, quantity, and orientation.

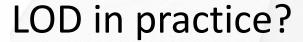
For LOD 200 to 500, Non-graphic information and data may also be attached to the Model Elements.

38. Model Subdivision and LOD

Project Specific Sub-division: O-Chart & File Size

ID	Disciplinary Model	Initial Model	Design Model	Coordinated Model	As-built Model	Sub Models
ES	Existing Site Model	200	200	250	250	4
ER	Road Model	250	300	350	500	7
BR	Bridge Model	250	300	350	500	34
UP	Underpass Model	250	300	350	500	11
BD	Building Model	250	300	350	500	27
			4			

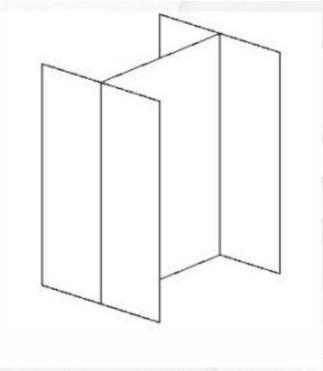
Progressively Developed during project; May not developed to same LoD


Further sub-division for operation and versioning

39. Geometric standard: Level of Development

LoD	Description
100	Graphically Represented as a Symbol
200	Graphically represented as a Generic object , with approximated size, shape, location, orientation
300	Graphically represented as a Specific Object , with accurate size, shape, location, and orientation Dimension can be directly measured from the model without referring to labels
400	Graphically represented as a specific object with fabrication , assembly , construction joints , installation information
500	Field verified representation with non-graphic attributes

40. LOD 100


LoD	Description
100	Steel Framing Columns as Generic Column Element

- Allow a design divide in different stages.
- A clear scope for consultant input
- Consultants can use the LOD standard to develop their design in different stages with a clear definition

41. LOD 200

LoD	Description
100	Steel Framing Columns as Generic Column Element
200	Steel Framing Columns as Generic Column , with approximated size, shape, location, orientation

42. LOD 300

LoD	Description
100	Steel Framing Columns as Generic Column Element
200	Steel Framing Columns as Generic Column , with approximated size, shape, location, orientation
300	Steel Framing Columns with Specific Sizes of Main Vertical Structural Members Modeled per defined structural grid with current location and orientation.

43. Level of Development – Steel Column

LoD	Description
100	Steel Framing Columns as Generic Column Element
200	Steel Framing Columns as Generic Column , with approximated size, shape, location, orientation
300	Steel Framing Columns with Specific Sizes of Main Vertical Structural Members Modeled per defined structural grid with current location and orientation.
400	Steel Framing Columns to include welds, coping of members, cap pates, washers, nuts and all assembly elements, etc.
500	Steel Framing Columns with As-Built Information.

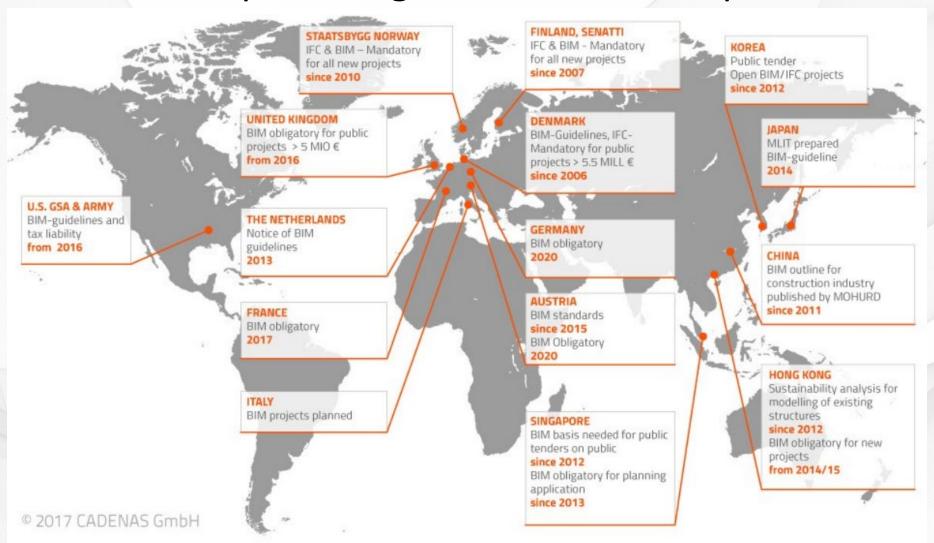
44. Level of Development – Doors

Doors

LOD	Description	Data	Example Image
100	N/A		-
200	Model doors with approximate dimensions in terms of location, size, count and type.		
300	Model doors accurately based on specific types. Ironmongery (handles, locks, hinges etc.) may be included as data for schedule output. Identify exterior and interior by type and by function. Each door shall have a unique ID based on the room or space which it is used to access.	Fire rating	
400	Update with specific manufacturers information.		
500	As-built door model.		

LOD in practice?

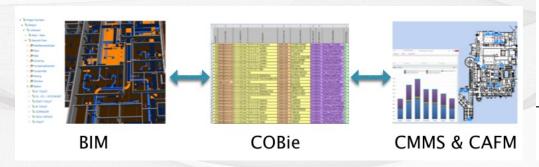
- The development can be carried out from consultants to contractor.
- All information can be contained and let the facility management team to operate the building with sufficient information.


45. CIC Standard: Pavement

LOD	Description
100	Approximate alignment, width and spot levels of the paving surfaces
200	Element modelling to include approximate 3D alignment, shape and width of pavement
300	Element modelling to include: - Accurate size and geometry of every layer of paving components (frication course, wearing course, base-course, road-base, sub-base, etc.) that varies continuously along the road alignment - Accurate super-elevation and longitudinal fall of the pavement components Required non-graphic information associated with model elements includes: - Polygon Feature Type * - Surface Material Type * - Paver Type * - Headroom requirement (* to match HyD GIS requirement)
400	Element modelling to include: - Locations of Construction Joints - Locations of Movement Joints - Locations of Box-out Openings - Lane and Road markings Required non-graphic information associated with model elements includes: - Unique Identifier of construction bay
500	A field verified as-built model with complete non-graphic information

LOD in practice?

- The development can be carried out from consultants to contractor.
- Contractor shall use the model to develop his Shop Drawings for approval which allow the Single Source of Truth (SSOT) is reflected in the model.
- All information can be contained and let the facility management team to operate the building with sufficient information.


46. Recent development of BIM in various countries and the prevailing standards and requirements

47. Worldwide organizations and standards promoting BIM (CIC, IFC, COBie, etc.)

UDC

中华人民共和国国家标准

GB/T ×××××-201×

建筑工程信息模型应用统一标准

Unified standard for building information model application (征求意见稿)

201×一××一×× 发布

201×-××-×× 实施

中华人民共和国住房和城乡建设部中华人民共和国国家质量监督检验检疫总局

48. Identification of the uses of BIM

- Design authoring
- Design coordination
- Estimating and cost management
- 4D BIM for construction management
- 5D BIM i.e. 3D + time + cost -Environmental and engineering analysis
- Visualization
- Model federation and validation
- Site supervision and safety management

	BIM Use	Investigation, Feasibility and Planning	Design	Construction	
1	Design Authoring	0	M	M	
2	Design Reviews	О	M	M	
3	Existing Conditions Modelling	0	О	M	
4	Site Analysis	0	M		
5	3D Coordination		M	M	
6	Cost Estimation	0	О	О	
7	Engineering Analysis		О	О	
8	Facility Energy Analysis		О	О	
9	Sustainability Evaluation	О	О	О	
10	Space Programming	0	О		
11	Phase Planning (4D Modelling)		О	M	
12	Digital Fabrication		О	О	
13	Site Utilization Planning			О	
14	3D Control and Planning			О	
15	As-Built Modelling			M	
16	Project Systems Analysis			О	
17	Maintenance Scheduling			О	
18	Space Management and Tracking			О	
19	Asset Management			О	
20	Drawing Generation (Drawing Production)		M	M	

Legend:

- M Mandatory BIM Use for the mentioned stage, including that carried forward from previous stage.
- O Optional BIM Use

