

Building Services Branch Architectural Services Department

Building Information Modelling (BIM) Guide for Building Services Installation (Version 2.0)

Objective

The primary purpose of this Guide is to gather and present factual materials in such a manner that project officers, both professional and technical, could obtain a common reference of the various practices on the adoption of BIM in design and construction for building services installations in building projects undertaken by the Building Services Branch of the Architectural Services Department.

Disclaimer

Whilst the Architectural Services Department endeavours to ensure the accuracy of the contents in this Guide, no expressed or implied warranty is given on the accuracy of any of its contents and there is no representation, either expressed or implied, as to the suitability of the said information and data for any particular purpose. It is hereby stated expressly that the department does not approve, recommend, endorse or certify the use of any of the information and technologies contained in or in connection with this Guide.

Users are responsible for making their own assessments and judgement of all information contained in or in connection with this Guide and are advised to seek independent verification as to its accuracy, currency or completeness. The department accepts no liability for any use of the said information and data or reliance placed on it. The department does not accept any responsibilities for any special, indirect or consequential loss or damages whatsoever arising out of or in connection with the use of this Guide.

The Architectural Services Department reserves the right to omit, edit or update the Guide at any time in its absolute discretion without any prior notice.

Table of Content

1.	Intro	duction1
	1.1	Overview
	1.2	Reference BIM Standards and Guidelines
	1.3	Abbreviation and Terminology2
2.	Data	a Management Requirements3
	2.1	General
	2.2	Project Folder Structure3
	2.3	Model Division5
	2.4	Information Exchange Formats5
	2.5	Model File Naming6
3.	BIM	Uses8
	3.1	General
	3.2	Design Authoring
	3.3	Design Review9
	3.4	Existing Conditions Modelling9
	3.5	Site Analysis
	3.6	3D Coordination
	3.7	Cost Estimation
	3.8	Engineering Analysis
	3.9	Facility Energy Analysis11
	3.10	Sustainability Evaluation
	3.11	Space Programming11
	3.12	Phase Planning (4D Modelling)11
	3.13	Digital Fabrication
	3.14	Site Utilization Planning12
	3.15	3D Control and Planning13
	3.16	As-built Modelling13
	3.17	
	3.18	Maintenance Scheduling14
	3.19	Space Management and Tracking14
	3.20	
	3.21	·
4.	Mod	elling Requirements15
	4.1	BIM Project Coordinates
	42	Linking to Architectural or Structure Models

	4.3	Unit of Measurement	15
	4.4	Date Format	16
	4.5	Scope of Modelling	16
	4.6	Level of Information Need (LOIN)	16
		4.6.1 Level of Graphics (LOD-G)	16
		4.6.2 Level of Information (LOD-I)	18
		4.6.3 Level of Documentation (DOC)	21
	4.7	Presentation Style	21
	4.8	Clearance Space for Operation and Maintenance	21
	4.9	MEP Object File	22
		4.9.1 General Requirements for MEP Object Creation	22
		4.9.2 Object File Naming Convention	23
5.	Data	Requirements for Asset Management	25
		Data Format of As-built Information	
	5.2	Deliverables	25

Annex A - Modelling Scope and LOIN Requirements

Annex B – Color Code and Line Style for Systems

Annex C – Sample Format of BIM Object Sheet

1. Introduction

1.1 Overview

This Building Information Modelling (BIM) Guide for Building Services Installation (hereinafter as the "Guide") documented the general requirements in the management and production of BIM models and related requirements for new works projects managed by Architectural Services Department (ArchSD). It aims at providing the basic requirements and practices for the processing of BIM model and related deliverables at design, construction and handover stages as reference. The Guide is formulated base on local and international recognized BIM standards, guidelines and industry practices. BIM is still under rapid development and this Guide would be subject to regular review and update to suit the latest development on BIM.

1.2 Reference BIM Standards and Guidelines

This Guide has made reference to the following international and local standards and guidelines:

- (a) Development Bureau Technical Circular (Works) No. 12/2020 Adoption of Building Information Modelling for Capital Works Projects in Hong Kong issued by Development Bureau of the HKSAR Government.
- (b) CIC BIM Standards General (Version 2) issued by Hong Kong Construction Industry
- (c) CIC BIM Standards for Mechanical, Electrical and Plumbing (MEP) issued by Hong Kong Construction Industry Council
- (d) CIC BIM Standards for Preparation of Statutory Plan Submissions issued by Hong Kong Construction Industry Council
- (e) Production of BIM Object Guide General Requirements issued by Hong Kong Construction Industry Council
- (f) CIC BIM Dictionary issued by Hong Kong Construction Industry Council
- (g) Computer-Aided-Drafting Standard for Works Projects (CSWP) issued by Development Bureau of the HKSAR Government
- (h) American Institute of Architects (AIA)'s G202-2013 Building Information Modeling Protocol Form.
- (i) BS EN ISO 19650-1:2018 Organization and digitization of information about buildings and civil engineering works, including building information modelling (BIM) –

First Issue Date: June 2018

- Information management using building information modelling Part 1: Concepts and Principles
- (j) BS EN ISO 19650-2:2018 Organization and digitization of information about buildings and civil engineering works, including building information modelling (BIM) – Information management using building information modelling Part 2: Delivery Phase of the Assets
- (k) BS EN ISO 19650-3:2018 Organization and digitization of information about buildings and civil engineering works, including building information modelling (BIM) – Information management using building information modelling, Part 3: Operational phase of the assets;
- BS EN ISO 19650-5:2018 Organization and digitization of information about buildings and civil engineering works, including building information modelling (BIM) – Information management using building information modelling, Part 5: Security-minded approach to information management;
- (m) PAS 1192-3:2014 Specification for information management for the operational phase of assets using Building Information Modelling.
- (n) PAS 1192-5:2015: Specification for security-minded Building Information Modelling, digital built environments and smart asset management.
- (o) Building Information Modelling Asset Management (BIM-AM) Standards and Guidelines issued by Electrical and Mechanical Services Department (EMSD).
- (p) BIM Guide for Facilities Upkeep issued by Property Services Branch of the Architectural Services Department.
- (q) BIM Guide for Cost Estimation issued by Quantity Surveying Branch of the Architectural Services Department.

1.3 Abbreviation and Terminology

The abbreviations and terminology /glossary as stated in the CIC BIM Dictionary applies.

Building Services Branch, ArchSD BIM Guide for Building Services Installation (Ver2.0) Author: BS BIMSSG

2. Data Management Requirements

2.1 General

Prior to BIM model production, a unified data management structure should be established for efficient BIM collaboration and information exchange in Common Data Environment (CDE). The project setup framework should make reference to ISO19650. A project folder setup should be developed for individual project by the project team according to the agreed /approved BIM Execution Plan (BEP).

2.2 Project Folder Structure

Project folder structures for BIM operation in the design and construction stage are recommended as follows:

Main Folder Structure

Folder Structure	Description
[Project Name / Code /Identity]	
01 Workstage 1 (TFS)	Workstage Folder
01 Master	Collaboration folder
02 Architectural	Disciplinary working folder
03 Building Services	Disciplinary working folder
04 Quantity Surveying	Disciplinary working folder
05 Structural	Disciplinary working folder
06 Project Management	Disciplinary working folder
02 Workstage 2-3 (Design)	Workstage Folder
03 Workstage 4 (Tender)	Workstage Folder
04 Workstage 5 (Construction)	Workstage Folder
05 As-built	Workstage Folder

First Issue Date: June 2018

"Master" Folder for Collaboration at Various Workstages

The "Master" folder is to store BIM information shared from respective disciplines. Other disciplines may use the shared BIM model for linking and therefore the stored files should not be able to deleted through access control.

"Disciplinary" Folder for Collaboration at Various Workstages

The "Disciplinary" folder is for the working by individual discipline in working and storing of BIM model and other project information specifically for the discipline. Access control should be applied so that other disciplines may not gain access to these folders.

First Issue Date: June 2018

"As-built" Folder

The "As-built" folder is to store as-built BIM and project information. The folder structure should

make reference to the Building Information Modelling – Asset Management (BIM-AM) Standards

and Guidelines issued by EMSD.

2.3 Model Division

A project BIM model should normally be divided into separate services /systems (e.g. air-

conditioning, electrical, fire service, plumbing, drainage, etc.). For projects with large site

footprint where several building blocks existed, the model may be further divided into several

zones (building blocks) for more efficient handling of models.

The BEP shall state the model division strategy (by services /systems or building blocks, etc.).

File sizes of each divided BIM model shall be kept minimum by purging of unused views, BIM

objects and settings before publish or submission. In general, the file size for each divided BIM

model is preferably controlled under 500Mb unless otherwise agreed by the Employer. The

modelling practices for all divided BIM models shall be consistent so that they could be

combined into federated model together with models of other disciplines in common software

platform tools.

2.4 Information Exchange Formats

To enable interoperability, exchange formats such as IFC shall be adopted to facilitate

geospatial and non-geospatial information exchange. The information exchanges requirement

should refer to the BIM Guide for Facilities Upkeep issued by the ArchSD and the BIM-AM

Standards and Guidelines issued by EMSD. For example, the information exchange of asset

data for EMSD BIM-AM is by means of COBieLite.

Page 5 First Issue Date: June 2018 Current Issue Date: June 2021

Author: BS BIMSSG

2.5 Model File Naming

The model file naming convention should follow the Hong Kong Local Annex of ISO 19650-2:2018 in Annex 1 of the CIC BIM Standards General as follows:

Field 1		Field 2		Field 3		Field 4	Field 5		Field 6
Project Code	-	Originator	-	Volume_(System)	-	Location_(Sub-location)	- Discipline_(Sub-discipli	ine) -	Type_(Characteristic)

Field	Description and Format						
Field 1	Project Code						
(4-8 characters)	A unique identifier for identification of the project: InForM or contract number (e.g. 7781)						
Field 2	Originator						
(3 characters)	A unique identifier based on Agent Responsible Code ((ARC) of the CAD Standard for Works					
	Projects to indicate the model's responsible authoring p	earty:					
	"ADB" for building services discipline of ArchSD						
Field 3	Volume (2-3 characters)	(System) (2-3 characters)					
(2-6 characters)	A unique identifier to indicate specific geospatial zone	An optional identifier to indicate a					
	or volume of the project (if required). The following	collection of interconnected model					
	generic codes should apply:	elements across main disciplines					
	"ZZ" – all volumes /systems	under a system (if required)					
	"XX" – division of volume /system is not required.						
Field 4	Location (2-4 characters)	(Sub-location) (2 characters)					
(2-6 characters)	A unique identifier to indicate specific location for	An optional identifier to indicate a					
	geospatial coordination. The following generic codes	sub-location (e.g. level) within the					
	should apply:	same location.					
	"ZZ" – multiple levels /locations; and						
	"XX" – no levels /location applicable.						
Field 5	Discipline (2 characters)	(Sub-discipline) (2 characters)					
(2-4 characters)	An identifier for each primary discipline to facilitate	An optional identifier to indicate the					
	appearance settings and information filtering for	sub-discipline (trade). The coding					
	interdepartmental coordination. The standard code	should refer to EMSD's BIM					
	"BS" should be applied.	Standards and Guidelines.					

First Issue Date: June 2018

Field	Description and Format	Description and Format					
Field 6	Type (2 characters)	(Characteristic) (1 character)					
(2-3 characters)	An identifier to indicate the information held within the	An optional identifier to indicate the					
	container. Commonly used coding as follows:	model's characteristic. Commonly					
	CM – combined model	used coding as follows:					
DR – 2D drawing		E – Existing					
	M3 – 3D model	T - Temporary works					
		N – New works					
		A – As-built					
		M - Maintenance					
		D – Demolition					
		W - All Works of above					

For a delimiter between Main Fields the Hyphen (-) or Minus character using Unicode Reference U+002D shall be used. Where a delimiter is required between Main Fields and Sub-Fields (if Sub-Field is required), then the Underscore (_) character using Unicode reference U+0332 shall be used.

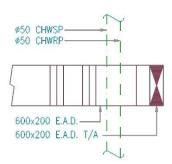
The following table provides some examples of BIM model file naming:

Model File Name	<u>Description</u>
7781-ADB-XX-ZZ-BS_EL-M3_N.xxx	Project InForM number 7781; BS discipline authoring party;
	volume/system not applicable ; multiple location within the BIM
	model ; BS discipline of Electrical Installation ; 3D BIM model of
	new works project
SSN308-ADB-XX-MB-BS_DR-M3_A.xxx	Contract number SS N308; BS discipline authoring party;
	volume/system not applicable; Main Block; BS discipline of
	Drainage Installation ; 3D BIM model of as-built nature

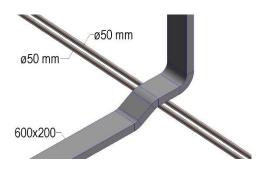
Remark: ".xxx" - file name extension

First Issue Date : June 2018

3. BIM Uses


3.1 General

The scope of BIM Uses in public works projects shall be according to the latest BIM related Technical Circular (Works) issued by the Development Bureau (DEVB). The following sections describe the general requirements and acceptable deliverables for various BIM Uses for building services installation.


3.2 Design Authoring

Design Authoring is a process of design starting from the outset by using BIM software platform. Unlike traditional design process using 2D software tool, the spatial coordination among services and other disciplines could perform efficiently by using BIM design software tool. The following graphs show the example on the design coordination between an air duct and chilled water pipes.

Traditional design authoring using 2D software tool

BIM design authoring with coordination among services from the outset

Unlike other disciplines, the design of building services installation usually originates from the schematic / logical diagram prior to the geospatial design. For example, the designer would first outline the electrical power distribution schematic diagram before working on the power distribution routings. Since the market available BIM software tools may not be capable to link up schematic and spatial design, it is understandable that a hybrid environment, i.e. use of 2D design tools to outline the schematic design and use of BIM software to exercise 3D spatial design, would still be maintained.

3.3 Design Review

Design Review is a process for stakeholders to view BIM model, images from the models or

animated walk-throughs of the design, provide feedback and validate design aspects such as

meeting design /specification requirements and previewing spaces /layouts in 3D geometry.

Examples of the process are as follows:

(a) Regular workshop or meeting to review the federated BIM design model by project team

in design stage using BIM software platform;

(b) Regular workshop or meeting to review the federated BIM construction model by project

team before construction /installation of equipment in construction stage using BIM

software platform; and

(c) Virtual mock-ups for review and approval by project team or client.

There are numerous ways for carrying out design review process. Some examples are animated

walk-throughs in BIM software platform, virtual mock-up by BIM software platform and virtual

mock-up by using virtual reality technology, etc. where project team may consider to plan and

specify if appropriate.

3.4 Existing Conditions Modelling

It is a process of 3D digital survey and production of BIM model for an existing site to facilitate

design planning. The digital survey may be carried out by photogrammetry or laser scanning

technology to generate Point Cloud model which is later transformed to an editable BIM model.

The deliverables should at least include BIM model(s) indicating the existing building services,

architectural and structure elements as appropriate. Where specified, the 3D digital survey

model should meet the following requirements:

(a) Georeferenced to the absolute coordinate system;

(b) Referenced and generated from the digital Point Cloud survey result;

(c) With colour schemes applied to various building services, architectural and structure

First Issue Date: June 2018

elements for differentiation; and

(d) Capable to serve as a base model for next step design authoring use.

3.5 Site Analysis

It is a process in which BIM and Geospatial Information System (GIS) tools are used to evaluate

a site to determine the most suitable location, position and orientation for a future project. The

analysis shall include master planning, sun and shadow studies, daylight analysis and solar

envelope analysis. This is normally performed by the architect or surveyor of a project and is

only required if specified in project.

3.6 3D Coordination

It is a process of using clash detection software tools to identify conflicts by analyzing 3D design

models from time to time during the design authoring process. The goal of the coordination

process is to deliver a proper design in design /pre-construction stage where the design /pre-

construction scheme should be clash-free. It is an on-going process starting from the outset of

design by various disciplines of design professionals. The following deliverables should be

provided in design and construction stage as a minimum:

(a) Clash analysis reports for the combined building services model for individual zones

/floors;

(b) Action plan with target completion schedule to handle and eliminate detected clashes

by designer /design consultants; and

(c) The clash analysis shall include the checking of headroom requirements and working

spaces for building services operations and maintenance activities.

3.7 **Cost Estimation**

It is a process of quantity take-offs directly from the BIM model to assist for cost estimation

exercise for a project. For example, the use of BIM model to assist for counting the number

of major equipment (e.g. AHU) for the project. This is normally performed by quantity surveyor.

Author: BS BIMSSG

3.8 **Engineering Analysis**

It is a process to analyze and assess different design options to determine the most effective

engineering solution by using BIM modelling or associated software. Application examples

includes lighting performance analysis, computational fluid dynamic (CFD) analysis and chiller

plant energy analysis etc.

The following deliverables should be provided in design and construction stage as minimum:

(a) Lighting performance simulation using the BIM model with outputs of 3D visualized

effect and performance results for at least 3 selected areas /room types.

3.9 **Facility Energy Analysis**

It is a process to analyze and assess the building energy performance by using building energy

simulation software with the aid of BIM model.

3.10 **Sustainability Evaluation**

For projects which aim to obtain the Gold or above rating of "BEAM Plus NB 2.0" certification of

the Hong Kong Green Building Council (HKGBC), the credit(s) for "BIM Integration" shall be

attained.

3.11 **Space Programming**

It is a process in which a spatial program is used to efficiently and accurately assess a design

layout model in regard to client spatial requirements. This is normally performed by architect

and is only required if specified in project.

3.12 Phase Planning (4D Modelling)

It is a process of linking a construction work programme to the model which is used to show the

construction sequence and phasing for construction. The process is usually name as 4D

modelling. The following deliverables should be provided in design and construction stage as a

Page 11

minimum:

First Issue Date: June 2018 Current Issue Date: June 2021

Author: BS BIMSSG

(a) On top of the overall building construction 4D work sequence model, specific 4D

simulation report for the following major building services plants to demonstrate the

proper delivery, installation, dismantle and replacement should be provided:

Central air-conditioning chilled water plant with total cooling capacity exceed

10,000kW; and

Central steam plant with total steam capacity exceed 2 ton/hour.

(b) The 4D simulation report shall contains the description of assumption, time interval,

construction method statement, guide for accessing the files and models, video(s) of

the 4D simulation, BIM native model(s), model(s) for the 4D simulation platform and

linked overall project programme;

(c) The 4D work sequence model shall link up the construction master programme to

demonstrate the compatibility of the installation works sequences of the BS/E&M plant;

and

(d) The model shall be assigned with the delivery path of major building services equipment

to demonstrate the feasibility and effectiveness of the installation method statements of

the works. All temporary works and site logistic arrangement shall be modelled to

demonstrate the feasibility and prove the constructability and buildability of the

proposed method statement.

3.13 **Digital Fabrication**

It is a process to use BIM models to facilitate the fabrication of construction materials or

assemblies such as sheet metal fabrication, structural steel fabrication and pipe cutting. The models can also be used for prototyping with 3D printers as part of a design intent review

process.

3.14 Site Utilization Planning

It is a process to use BIM models to perform site space planning, site logistics, sequencing

requirements, temporary works and safety. If specified, the construction phase BIM model

should be linked to the construction schedule (4D) include permanent and temporary facilities

on site for all of the phases of the construction process. This is normally performed by the

contractor if specified in the contract.

3.15 3D Control and Planning

It is applicable for project requiring the adoption of Digital Works Supervision System in

according to DEVB Technical Circular (Works) No.3/2020 that digital setting-out, construction

checking, etc. as appropriate by means of 3D laser scanners, robotic total stations, etc. shall be

adopted as far as practicable.

3.16 As-built Modelling

It is a process of preparing an accurate record of the physical conditions and assets of a project.

The as-built model should contain information relating to the building services elements with

links to operation, maintenance, and asset data. Additional information and data for equipment

and space planning may be included. The following deliverables should be provided for as-built

BIM model:

(a) 3D textured digital model created by photogrammetry and laser scanning technology

for accurate geometric and photogrammetric detail for the following completed works;

Central air-conditioning chilled water plant with total cooling capacity exceed

10,000kW; and

- Central steam plant with total steam capacity exceed 2 ton/hour.

(b) Browsing software /software license (during DLP) for the 3D textual digital model.

(c) As-built BIM model(s) with required equipment /materials information embedded;

(d) File folder contains the as-built model(s) and other necessary information, files and

documents as required for asset management (refer to other section of this Guide).

3.17 Project Systems Analysis

It is a process to measure how a project performs compared to the design specifications. This

may include assessing how a mechanical system operates, how much energy a project uses,

conducting lighting analysis, solar gain analysis and airflow analysis using CFD.

3.18 Maintenance Scheduling

It is a process for planning and managing the maintenance of a project structure, building fabric

and equipment during the operational life of a facility. The data required for asset management

should be collected during the construction stages and input into the as-built BIM model.

3.19 Space Management and Tracking

It is a process to utilize as-built BIM model to assess, manage and track spaces and associated

resources within a project. A BIM database may be integrated with spatial tracking software to

analyze the existing use of space, apply transition planning for renovations and refurbishment

projects.

3.20 Asset Management

It is a process of identifying the required data sets and data formats which can be extracted

stipulated in the EMSD's BIM-AM Standards and Guidelines.

3.21 Drawing Generation (Drawing Production)

It is a process of producing drawing sheets from the BIM model source. For some building

services equipment, the direct presentation of their geometry shape in 2D view may not be legible or identifiable on its function. The use of symbols with proper offset are required for clear

presentation when generate the 3D geometry model to 2D drawing sheet.

For schematic and control logic diagrams as supplement of design details of building services

designs, the use of 2D design authoring tools to produce the drawings are acceptable. 2D

drawings which are generated from the BIM model need not to follow CSWP.

Building Services Branch, ArchSD BIM Guide for Building Services Installation (Ver2.0)

Page 14 First Issue Date : June 2018 Current Issue Date : June 2021

4. Modelling Requirements

4.1 BIM Project Coordinates

Information Models shall be set up to match true world coordinates and elevation. The project origin point should be set-up as the basis for all of the model sharing systems among the different disciplines as follows:

- (a) Eastings and Northings shall refer to Hong Kong 1980 Grid System;
- (b) The location of city should be set as Hong Kong, China (i.e. Latitude: 22.2833°; Longitude: 114.15°);
- (c) The rotation angle of the project should reflect True North. Where Project North is created it should only be used for identified sheet views and not used for any model coordination; and
- (d) Elevations shall refer to Hong Kong Principal Datum (HKPD).

If a model is produced in a local co-ordinate system due to software functionality or limitations, the BIM coordinator or modeller shall be responsible for providing clear instruction and documentation as to the origin x, y, z and bearing translations accompanying their BIM submission.

4.2 Linking to Architectural or Structure Models

The general rules for model linking are as follows:

- (a) The coordinates of the architectural and/or structure models should be checked before linking. Same coordinates should be adopted for models to be linked.
- (b) Models to be linked should be purged before linking.
- (c) Do not link to model under working (WIP).
- (d) The linked model should not be a copy of the central model.

4.3 Unit of Measurement

BIM model should be modelled in metric system (International System of Units or SI Units).

First Issue Date: June 2018

4.4 Date Format

Date format should follow ISO 8601 Data elements and interchange formats – Information interchange – Representation of dates and times as follow:

Year				Month Date			ate	
	Υ	Υ	Υ	Υ	М	М	D	D

4.5 Scope of Modelling

The BIM model should cover the entire building services installation for the whole project development if associated architectural model is available. In general, components not embedded into concrete or building structure should be model. As a general reference, the building services objects /elements listed in **Annex A – Modelling Scope and LOIN Requirements** should be modelled if applicable to the projects. The list in Annex A is not exhaustive and additional objects /elements specific to individual projects should be included and documented in the BEP.

4.6 Level of Information Need (LOIN)

The recommended LOD-G and LOD-I for individual building services element at different stages are listed in Annex A. The definitions and requirements of graphical representation (LOD-G), non-graphical information (LOD-I) and documentation (DOC) of MEP elements should make reference to the CIC's BIM Standards (General) and BIM Standards for Mechanical Electrical and Plumbing (MEP).

4.6.1 Level of Graphics (LOD-G)

The definitions of various levels of the LOD-G for building services installation are as listed in the following table.

First Issue Date: June 2018

Definition of LOD-G

LOD-G	Definition
100	The model element is graphically represented within the model by a symbol or generic representation or rough 3D shape.
200	The model element is graphically represented within the model as a generic system, object or assembly with approximate quantities, size, shape, location and orientation. The general required spaces for access and maintenance shall be indicated. Model element is graphically represented as assumed size /shape of equipment
300	The model element is graphically represented within the model as a specific system, object or assembly in terms of quantity, size, shape, location and orientation. The model / object shall include details of the spaces required for handling installation, operation and maintenance, and the interface details for checking and coordination with other models /objects. The model element should easily be recognized the graphical representation without further clarification.
400	The model element is graphically represented within the model as a specific system, object or assembly in terms of quantity, size, shape, location and orientation with detailing, fabrication, assembly and installation information.

Examples of the object graphical representations for a water pump set at different levels of LOD-G are illustrate in following table.

Example of Object Graphical Representation for a Water Pump Set

LOD	Example Image	Description
100		Schematic Model The water pump set is modelled to indicate its existence for scheme design purpose
200	OFF	Generic Model A generic water pump set in which the approximate quantities, size, shape, location and orientation are not specific
300		Specific Model A specific water pump set in which the quantity, size, shape, location and orientation are specific for individual design application area
400		Specific Model with Fabrication Details A specific water pump set in which the manufacturer size, dimensions and details are specific for fabrication purpose

4.6.2 Level of Information (LOD-I)

LOD-I is the description of non-graphical information of a MEP model element. The information required for the model elements will be enriched as a project progresses and evolves. The minimum data requirements at various levels of LOD-I for building services installation are as following table.

First Issue Date : June 2018

Minimum Data Requirements of LOD-Graphics (LOD-G)

BIM Object Properties	Object Data Requirements		LOD-I			
		<u>100</u>	<u>200</u>	<u>300</u>	<u>400</u>	<u>500</u>
General Properties	General information of the object	R	R	R	R	R
	including equipment identification,					
	designation, type and materials, etc.					
Design Properties	Design information and parameters of the		R	R	R	R
	objects.					
Classification Properties	The classification title and code of the			R	R	R
(Optional)	model elements reference to the					
	OmniClass table 23 or other coding					
	system as agreed					
Manufacturer's	Manufacturer's equipment information				R	R
Equipment Properties	and parameters of the objects, including					
	equipment manufacturer's name,					
	supplier's name, brand name, model					
	number and country of origin					
Condition Properties	Installation information including				R	R
	installation month/year, latest testing					
	/commissioning month/year and					
	equipment life expectancy					
Verification Properties	Field verification method used for					R
	verifying the as-built element					

Remark: R - Required

Examples of the object data requirements for an air-cooled chiller at different levels of LOD-I are illustrate in following table.

First Issue Date: June 2018

Example of Object Data Requirements for an Air-cooled Chiller

BIM Object Properties	Object Data Requirements	LOD-I				
		<u>100</u>	<u>200</u>	<u>300</u>	<u>400</u>	<u>500</u>
General Properties	Equipment type : air-cooled chiller	R	R	R	R	R
	Designation : ACC-01					
Design Properties	Cooling capacity: 1,000 kW		R	R	R	R
	Chilled water output temperature : 7°C					
	Chilled water inlet temperature : 12.5°C					
	Evaporator water flow rate : 43 l/s					
	Ambient temperature : 35°C					
	AHRI's Coefficient of Performance : 3.2					
	AHRI's Integrated Part-load Value : 7					
	Compressor : screw / centrifugal					
Classification Properties	Reference to the OmniClass table 23			R	R	R
Manufacturer's	Rated cooling capacity : 1,080 kW				R	R
Equipment Properties	Chilled water output temperature : 7°C					
	Chilled water inlet temperature : 12.5°C					
	Evaporator water flow rate : 47 l/s					
	Ambient temperature : 35°C					
	AHRI's Coefficient of Performance : 3.4					
	AHRI's Integrated Part-load Value : 7.6					
	Compressor : centrifugal					
	No. of compressor : 1					
	Manufacturer : XXX Co. Ltd.					
	Supplier : YYY Co. Ltd.					
	Brand : AAA					
	Model number : ACC-CENT-1000					
	Country of origin : PRC					
Condition Properties	Installation date : Sep 2020				R	R
	Commissioning date : Oct 2020					
	Compressor life expectancy : 20 years					
	Evaporator life expectancy : 20 years					
	Condenser fan life expectancy : 15 years					
Verification Properties	Field verification : laser scanning					R

Remark: R - Required

First Issue Date : June 2018

4.6.3 Level of Documentation (DOC)

DOC is the documentation requirement of a MEP model element. The minimum documentation requirements at various levels of LOD-I for building services installation are as following table.

Minimum DOC Requirements of LOD-I

BIM Object Properties	Object Documentation Requirements			LOD-I		
		<u>100</u>	<u>200</u>	<u>300</u>	<u>400</u>	<u>500</u>
Specification Properties	Product technical document (e.g. product				R	R
	technical sheet, catalogue, type test					
	certificate, etc.), and other external					
	document in the form of a hyperlink					
	Operation and Maintenance Manual, Test					R
	and Commissioning Report, Test					
	Certificates, etc., and other external					
	document in the form of a hyperlink					

For systems to be handed over to EMSD for operation and maintenance, archived document files storing in designated folder structure is required to upload to EMSD's Asset Management Platform for the assignment of document link path.

4.7 Presentation Style

The line weight and line type in 2D drawing presentation and the colour code in 3D model view for presentation should be standardarized and follow the recommendations in Annex B - Color Code and Line Style for Systems. The recommended color code and line style should be applied for design, construction and as-built models.

4.8 Clearance Space for Operation and Maintenance

For construction and as-built model, the following major model elements /objects should incorporate clearance spaces to demonstrate operation and maintenance in the BIM model. Clearance should be included in the properties of objects to enable clash detection process in the BIM software tools.

First Issue Date: June 2018

- Chiller
- Boiler
- Plate Type Heat Exchanger
- Air-handling Unit /Primary Air Unit
- High /Low Voltage Cubicle Switchboard
- Generator
- Condensing Units
- Cooling Towers
- Valve set etc.

4.9 MEP Object File

MEP object file is a data file contains building services element and should include the graphical representation and non-graphical information to indicate the element's characteristics. It should also include the 2D component of symbol and tag /label /annotation if applicable.

The MEP object should be provided with a BIM Object Sheet to convince all parties that the MEP object created is complete, satisfying the requirements and the purpose of drawing production. The details for the creation of MEP object should refer to the CIC Production of BIM Object Guide – General Requirements. The sample format of BIM Object Sheet is enclosed in **Annex C**.

4.9.1 General Requirements for MEP Object Creation

The following general requirements should be followed in creation of object:

- (a) The object file should include information of physical dimension for coordination of BIM model.
- (b) Drawing symbol should be included in an object file for 2D drawing output and can be referenced to the CAD Standard for Works Projects (CSWP). The shape and size of symbol should be coordinated for easy reading in the drawing output.
- (c) Symbolic 2D annotation (drawing symbol) should be visible while the 3D geometry should be invisible in drawing output of plan view.
- (d) 3D geometry shall be visible for rendering in 3D view.
- (e) Object file should include the material /equipment information.

First Issue Date: June 2018

- (f) Nesting object file should be limited to 2 levels except for drawing symbol. It is important to understand that nesting object file increases the file size and affects performance, specifically the regeneration process of the object file views.
- (g) Host object file should not be allowed.
- (h) The LOIN, line styles, line weight, line pattern, text style and unit of measurement for modelling of object shall refer to relevant sections of this Guide.
- (i) To minimize the object file size, only essential connectors should be used and the object file should be created directly from an object file template to reduce extra information in an object file
- (j) Level of the insertion /origin point of the object file is recommended at the centre point at the bottom level of the object.

4.9.2 Object File Naming Convention

The recommended object file naming structure (4-5 fields separate by a hyphen between the fields) in design and construction stage is as below:

Field 1	Field 2	Field 3	Field 4	Field 5
Category	Sub-Type	Originator	Descriptor 1	Descriptor 2
				(Optional)

Example:

Model File Name	<u>Description</u>
HVA-CHR-ADB-AIR_COOLED-HEAT_RECOVERY.xxx	Object created by ArchSD BSB, HVAC System,
	Chiller, 800kW rating
EL-DTB-ADB-400A.xxx	Object created by ArchSD BSB, Electrical
	Distribution System, Distribution Board, 400A
	rating

Remark: ".xxx" - file name extension

Field 1 : 3 characters (alphabetic) for category of the BIM object as specified as the "System Code" in

the EMSD's latest version of the BIM-AM Standards and Guidelines

Field 2 : 3 characters (alphabetic) for sub-type of the BIM object as specified as the "Equipment Code"

in the EMSD's latest version of the BIM-AM Standards and Guidelines, e.g.:

AHU: Air-handling Unit

DTB: Distribution Board

Field 3 3 characters (alphanumeric) indicate the Originator (who own or create the BIM object), same

as the Agent Responsible Code, e.g.:

ADA for architectural discipline of ArchSD

ADB for building services discipline of ArchSD

ADS for structural discipline of ArchSD

Field 4 : Maximum 20 characters (alphanumeric) further describe the BIM object, e.g.:

AIR_COOLED: Air-cooled

400A: 400 ampere

Field 5 : Optional field, maximum 20 characters (alphanumeric) further describe the BIM object, e.g.:

HEAT_RECOVERY: Heat recovery

Page 24 First Issue Date : June 2018 Current Issue Date : June 2021 5. **Data Requirements for Asset Management**

5.1 Data Format of As-built Information

The requirements of BIM folder structure, file coding, naming convention, model presentation

style (colour code, line type, line weight, etc.) and unit of measurement of the as-built BIM model for building services installations should make reference to the Building Information Modelling

Asset Management (BIM-AM) Standards and Guidelines issued by EMSD.

For the requirements of as-built BIM model for plumbing and drainage installations, reference

should be made to the BIM Guide for Facilities Upkeep issued by Property Services Branch of

the Architectural Services Department.

If the building MEP facilities would not be handed over to EMSD for maintenance (example:

Schedule 2 hospital to be maintained by the Hospital Authority), the project client should be

consulted on the detailed as-built BIM data requirements and the explicit referencing to the

EMSD's BIM-AM Standards and Guidelines may not be required.

5.2 **Deliverables**

The following deliverables should be included in the as-built information file folder:

(a) BIM execution plan indicating the adopted modelling methodology and details;

(b) As-built BIM models for all disciplines and 2D drawing files for building services installation;

(c) Design authoring tools' templates, title block, BIM object files and other necessary

Page 25

resources for viewing of the as-built BIM model;

(d) Testing and Commissioning reports;

(e) Operation and Maintenance manuals;

(f) Relevant statutory certificates, approval documents and forms; and

(g) Other relevant project information as required.

First Issue Date: June 2018 Current Issue Date: June 2021

Author: BS BIMSSG

FS : Feasibility Study /Conceptual Design model TN : Tender model V : Field verification

SD : Sketch Design / Approval-in-Principle (AIP) model CON : Construction shop model V(I) : Field verification by visual inspection

DD : Detailed Design / Detailed Design Approval (DDA) model Ab : As-built model V(M) : Field verification by measured survey

MEP Object		Minim	um LOD	Require	ements a	nd Field	d Verifica	ation Me	thod for	as-buil	t BIM Mo	del Qua	lity Ass	urance	
	F	S	S	D	D	D	S	A	Т	N	CC	N		Ab	
	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	٧
HVAC Installation															
Chiller	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(M)
Heat pump	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(M)
Cooling tower	100	100	100	200	200	200	-	1	200	200	300	300	300	500	V(M)
Heat exchanger	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(M)
Calorifier	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(M)
Chilled water pump	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(M)
Heating water pump	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(M)
Condenser tube cleaning equipment	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
VRV/DX indoor and outdoor unit	-	-	100	200	200	200	-	-	200	200	300	300	300	500	V(I)
Standalone air-conditioner /Split-type unit	-	-	100	200	200	200	-	-	200	200	300	300	300	500	V(I)
Primary air unit (PAU)	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(M)

FS : Feasibility Study /Conceptual Design model TN : Tender model V : Field verification

SD : Sketch Design / Approval-in-Principle (AIP) model CON : Construction shop model V(I) : Field verification by visual inspection

DD : Detailed Design / Detailed Design Approval (DDA) model Ab : As-built model V(M) : Field verification by measured survey

MEP Object		Minim	um LOD	Require	ements a	nd Field	d Verifica	ation Me	thod for	as-buil	t BIM Mo	del Qua	lity Ass	urance	
	F	S	S	D	D	D	S	A	Т	N	CC	N		Ab	
	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	٧
Air-handling unit (AHU)	100	100	100	200	200	200	-	1	200	200	300	300	300	500	V(M)
Fan-coil unit (FCU)	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(I)
Computer room air-conditioning (CRAC) unit	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(I)
Ventilation fan	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(I)
Booster fan	-	-	100	200	200	200	-	-	200	200	300	300	300	500	V(I)
Jet fan	-	1	100	100	200	200	-	1	200	200	300	300	300	500	V(I)
Rotary fan (fixed type)	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Ceiling fan	-	1	100	100	200	200	-	1	200	200	300	300	300	500	V(I)
Water scrubber	100	100	100	200	200	200	-	1	200	200	300	300	300	500	V(I)
Constant air volume box /air valve	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Variable air volume box /air valve	-	1	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Air duct	-	1	100	100	200	200	-	-	200	200	300	300	300	500	V(I)

FS : Feasibility Study /Conceptual Design model TN : Tender model V : Field verification

SD : Sketch Design / Approval-in-Principle (AIP) model CON : Construction shop model V(I) : Field verification by visual inspection

DD : Detailed Design / Detailed Design Approval (DDA) model Ab : As-built model V(M) : Field verification by measured survey

MEP Object		Minim	um LOD	Require	ements a	nd Field	d Verifica	ation Me	thod for	as-buil	t BIM Mo	del Qua	lity Ass	urance	
	F	S	S	D	D	D	S	A	Т	N	CC	N		Ab	
	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	٧
Chilled /Heating water pipe	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Condensate drain pipe	-	-	-	-	200	200	-	-	200	200	300	300	300	500	V(I)
Water pipe (others)	-	-	-	-	200	200	-	-	200	200	300	300	300	500	V(I)
Valve (>20mm dia.)	-	-	-	-	200	200	-	-	200	200	300	300	300	500	V(I)
Air damper	-	-	-	-	200	200	-	-	200	200	300	300	300	500	V(I)
Fire /smoke damper	-	-	-	-	200	200	-	-	200	200	300	300	300	500	V(I)
Air diffuser /grille	-	-	-	-	200	200	-	-	200	200	300	300	300	500	V(I)
Direct digital control (DDC) panel	-	-	-	-	200	200	-	-	200	200	300	300	300	500	V(I)
CCMS server /server rack	-	-	-	-	200	200	-	-	200	200	300	300	300	500	V(I)
Control console	-	-	-	-	200	200	-	-	200	200	300	300	300	500	V(I)
Steam and Hot Water System															
Steam /hot water boiler	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(M)

FS : Feasibility Study /Conceptual Design model TN : Tender model V : Field verification

SD : Sketch Design / Approval-in-Principle (AIP) model CON : Construction shop model V(I) : Field verification by visual inspection

DD : Detailed Design / Detailed Design Approval (DDA) model Ab : As-built model V(M) : Field verification by measured survey

MEP Object		Minim	um LOD	Require	ements a	nd Field	d Verifica	ation Me	thod for	as-buil	t BIM Mo	del Qua	lity Ass	urance	
	F	S	S	D	D	D	S	A	Т	N	CC	N		Ab	
	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	٧
Heat exchanger	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(M)
Calorifier	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(M)
Feed /blow down water tank	-	-	100	200	200	200	-	-	200	200	300	300	300	500	V(M)
Steam /hot water pipe	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Steam condensate pipe	-	-	-	-	200	200	-	-	200	200	300	300	300	500	V(I)
Steam flash vessel	1	1	100	200	200	200	-	1	200	200	300	300	300	500	V(I)
Valve (>20mm dia.)	-	-	-	-	200	200	-	-	200	200	300	300	300	500	V(I)
Steam trap	-	-	-	-	200	200	-	-	200	200	300	300	300	500	V(I)
Main control console /panel	-	-	-	-	200	200	-	-	200	200	300	300	300	500	V(I)
Electrical Installation															
Transformer (customer owned)	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(M)
Switchboard cubicle	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(M)

FS : Feasibility Study /Conceptual Design model TN : Tender model V : Field verification

SD : Sketch Design / Approval-in-Principle (AIP) model CON : Construction shop model V(I) : Field verification by visual inspection

DD : Detailed Design / Detailed Design Approval (DDA) model Ab : As-built model V(M) : Field verification by measured survey

SA : Submission to Approval Authority (e.g. SCCU)

MEP Object		Minim	um LOD	Require	ements a	nd Field	d Verifica	ation Me	thod for	as-buil	t BIM Mo	del Qua	lity Ass	urance	
	F	S	S	D	D	D	S	A	Т	N	CC	N		Ab	
	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	V
Cut-out supply panel	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(I)
Motor control centre	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(M)
Motor control panel	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(I)
Uninterruptible power supply unit (except small-	-	-	100	200	200	200	-	-	200	200	300	300	300	500	V(I)
scale standalone UPS for computer)															
Variable speed drive (standalone)	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
MCCB /MCB board	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Socket outlet	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Floor box	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Fuse spur unit	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Electric vehicle charging panel /station	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Generator set	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(M)
Generator remote radiator	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(I)

Building Services Branch, ArchSD BIM Guide for Building Services Installation (Ver2.0) Author: BS BIMSSG Annex A - Page 5

First Issue Date : June 2018 Current Issue Date : June 2021

FS : Feasibility Study /Conceptual Design model TN : Tender model V : Field verification

SD : Sketch Design / Approval-in-Principle (AIP) model CON : Construction shop model V(I) : Field verification by visual inspection

DD : Detailed Design / Detailed Design Approval (DDA) model Ab : As-built model V(M) : Field verification by measured survey

MEP Object		Minim	um LOD	Require	ements a	nd Field	d Verifica	ation Me	thod for	as-buil	t BIM Mo	del Qua	lity Ass	urance	
	F	S	S	D	D	D	S	A	Т	N	CC	N		Ab	
	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	٧
Generator cooling water pump	-	1	100	200	200	200	-	-	200	200	300	300	300	500	V(I)
Fuel tank	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(I)
Fuel pump	-	-	100	200	200	200	-	-	200	200	300	300	300	500	V(I)
Fuel pipe	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Fuel valve (>20mm dia.)	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Photovoltaic panel	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(I)
Wind turbine	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(I)
Capacitor bank cubicle	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Harmonic filter cubicle	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Control /metering panel	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Luminaire /light fitting	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Lamp pole / bollard	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)

FS : Feasibility Study /Conceptual Design model TN : Tender model V : Field verification

SD : Sketch Design / Approval-in-Principle (AIP) model CON : Construction shop model V(I) : Field verification by visual inspection

DD : Detailed Design / Detailed Design Approval (DDA) model Ab : As-built model V(M) : Field verification by measured survey

MEP Object		Minim	um LOD	Require	ements a	nd Field	d Verifica	ation Me	thod for	as-buil	t BIM Mo	del Qua	lity Ass	urance	
	F	S	S	D	D	D	S	A	Т	N	CC	N		Ab	
	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	٧
Stage lighting bar	-	ı	100	100	200	200	-	1	200	200	300	300	300	500	V(I)
Occupancy /daylight sensor	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Power busduct	-	ı	100	100	200	200	-	1	200	200	300	300	300	500	V(I)
Cable ladder	-	ı	100	100	200	200	-	1	200	200	300	300	300	500	V(I)
Cable tray	-	ı	100	100	200	200	-	ı	200	200	300	300	300	500	V(I)
Trunking	-	ı	100	100	200	200	-	1	200	200	300	300	300	500	V(I)
Fire Service Installation															
Sprinkler / FS / Booster water pump	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(M)
Water tank	100	100	100	200	200	200	-	1	200	200	300	300	300	500	V(I)
Street fire hydrant	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Fire hydrant / Hose reel	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Sprinkler control valve	-	ı	100	100	200	200	-	-	200	200	300	300	300	500	V(I)

FS : Feasibility Study /Conceptual Design model TN : Tender model V : Field verification

SD : Sketch Design / Approval-in-Principle (AIP) model CON : Construction shop model V(I) : Field verification by visual inspection

DD : Detailed Design / Detailed Design Approval (DDA) model Ab : As-built model V(M) : Field verification by measured survey

SA : Submission to Approval Authority (e.g. SCCU)

MEP Object		Minim	um LOD	Require	ements a	nd Field	d Verifica	ation Me	thod for	as-buil	t BIM Mo	del Qua	lity Ass	urance	
	F	S	S	D	D	D	S	A	Т	N	CC	N		Ab	
	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	٧
Sprinkler pre-action valve set	1	1	100	100	200	200	-	1	200	200	300	300	300	500	V(I)
Sprinkler flow switch	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Sprinkler head	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Gas flooding spray head	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Drencher spray head	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Fire /Smoke /Heat /Beam detector	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Breakglass unit	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Alarm bell	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Visual fire alarm	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Fire alarm / battery panel	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Portable fire extinguisher	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Fixed automatically operated appliance	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)

First Issue Date: June 2018

FS : Feasibility Study /Conceptual Design model TN : Tender model V : Field verification

SD : Sketch Design / Approval-in-Principle (AIP) model CON : Construction shop model V(I) : Field verification by visual inspection

DD : Detailed Design / Detailed Design Approval (DDA) model Ab : As-built model V(M) : Field verification by measured survey

SA : Submission to Approval Authority (e.g. SCCU)

MEP Object		Minim	um LOD	Require	ements a	nd Field	d Verifica	ation Me	thod for	as-buil	t BIM Mo	del Qua	lity Ass	urance	
	F	S	S	D	D	D	S	A	Т	N	CC	N		Ab	
	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	٧
Exit /Directional sign	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Emergency luminaire	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Water pipe	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Valve (>20mm dia.)	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Pressurization fan	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(I)
Smoke extraction fan	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(I)
Smoke extraction air duct	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Total flooding gas pipe	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Burglar Alarm and Security Installation															
Drop arm barrier	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Mechanical road block	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Access card reader	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)

First Issue Date: June 2018

Current Issue Date: June 2021

FS : Feasibility Study /Conceptual Design model TN : Tender model V : Field verification

SD : Sketch Design / Approval-in-Principle (AIP) model CON : Construction shop model V(I) : Field verification by visual inspection

DD : Detailed Design / Detailed Design Approval (DDA) model Ab : As-built model V(M) : Field verification by measured survey

MEP Object		Minim	um LOD	Require	ements a	nd Field	d Verifica	ation Me	thod for	as-buil	t BIM Mo	del Qua	lity Ass	urance	
	F	S	S	D	D	D	S	A	Т	N	CC	N		Ab	
	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	٧
Door release button	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Emergency breakglass unit	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Doorphone unit	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
CCTV camera	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Movement detector	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Glass break detector	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Watchman tour patrol point	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Centralized security system server /rack	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
CCTV video recorder /rack	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
CCTV control console	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
CCTV /Security system display panel	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Security system control panel	_	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)

FS : Feasibility Study /Conceptual Design model TN : Tender model V : Field verification

SD : Sketch Design / Approval-in-Principle (AIP) model CON : Construction shop model V(I) : Field verification by visual inspection

DD : Detailed Design / Detailed Design Approval (DDA) model Ab : As-built model V(M) : Field verification by measured survey

MEP Object		Minim	um LOD	Require	ements a	and Field	d Verifica	ation Me	thod for	as-buil	t BIM Mo	del Qua	lity Ass	urance	
	F	S	S	D	D	D	S	A	Т	N	CC	N		Ab	
	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	٧
Broadcast Reception Installation															
Aerials	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Preamplifier /Amplifier	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Fibre optical panel	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Outlet	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Lift and Escalator Installation															
Lift car	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(I)
Lift machine	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(I)
Lift landing call panel	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Fireman's switch	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Dumbwaiter car	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(I)
Escalator	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(I)

FS : Feasibility Study /Conceptual Design model TN : Tender model V : Field verification

SD : Sketch Design / Approval-in-Principle (AIP) model CON : Construction shop model V(I) : Field verification by visual inspection

DD : Detailed Design / Detailed Design Approval (DDA) model Ab : As-built model V(M) : Field verification by measured survey

MEP Object		Minim	um LOD	Require	ements a	nd Field	d Verifica	ation Me	thod for	as-buil	t BIM Mo	del Qua	lity Ass	urance	
	F	S	S	D	D	D	S	A	Т	N	CC	N		Ab	
	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	V
Passenger conveyor	100	100	100	200	200	200	-	ı	200	200	300	300	300	500	V(I)
Vertical lifting platform	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(I)
Stairlift	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(I)
Catering Equipment															
Food processing equipment	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Sink	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Dish washer	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Refrigerator	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Freezer	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Liquefied Petroleum /Town Gas Installation															
Gas pipe	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Gas valve	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)

FS : Feasibility Study /Conceptual Design model TN : Tender model V : Field verification

SD : Sketch Design / Approval-in-Principle (AIP) model CON : Construction shop model V(I) : Field verification by visual inspection

DD : Detailed Design / Detailed Design Approval (DDA) model Ab : As-built model V(M) : Field verification by measured survey

MEP Object		Minim	um LOD	Require	ements a	nd Field	d Verifica	ation Me	thod for	as-buil	t BIM Mo	del Qua	lity Ass	urance	
	F	S	S	D	D	D	S	A	Т	N	CC	N		Ab	
	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	٧
Outlet	-	1	100	100	200	200	-	1	200	200	300	300	300	500	V(I)
Swimming Pool Water Treatment Installation															
Sand filter	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(M)
Ozone reaction tank	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(M)
Carbon filter tank	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(M)
Ozonator	-	-	100	200	200	200	-	-	200	200	300	300	300	500	V(I)
Sodium hypochlorite generation equipment	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(I)
Hypochlorite storage tank	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Hydrogen blower	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Hydrogen gas detection system	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
pH and Chlorine controller	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Mixed oxidant disinfection equipment	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)

FS : Feasibility Study /Conceptual Design model TN : Tender model V : Field verification

SD : Sketch Design / Approval-in-Principle (AIP) model CON : Construction shop model V(I) : Field verification by visual inspection

DD : Detailed Design / Detailed Design Approval (DDA) model Ab : As-built model V(M) : Field verification by measured survey

MEP Object		Minim	um LOD	Require	ements a	nd Field	d Verifica	ation Me	thod for	as-buil	t BIM Mo	del Qua	lity Ass	urance	
	F	S	S	D	D	D	S	A	Т	N	CC	N		Ab	
	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	٧
Brine tank	-	1	100	100	200	200	-	1	200	200	300	300	300	500	V(I)
Mixed oxidant solution tank	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
UV chamber	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Water pump set	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(I)
Water pipe (>20mm dia.)	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Water valve (>20mm dia.)	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Medical Gas Pipeline System															
Vacuum insulated Evaporator (VIE) tank	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(M)
Oxygen manifold	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Medical /non-medical air compressor plant	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(I)
Air receiver	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(I)
Air dryer	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)

FS : Feasibility Study /Conceptual Design model TN : Tender model V : Field verification

SD : Sketch Design / Approval-in-Principle (AIP) model CON : Construction shop model V(I) : Field verification by visual inspection

DD : Detailed Design / Detailed Design Approval (DDA) model Ab : As-built model V(M) : Field verification by measured survey

MEP Object		Minim	um LOD	Require	ements a	nd Field	d Verifica	ation Me	thod for	as-buil	t BIM Mo	del Qua	lity Ass	urance	
	F	S	S	D	D	D	S	A	Т	N	CC	N		Ab	
	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	٧
Dust /carbon filer	-	1	100	100	200	200	-	1	200	200	300	300	300	500	V(I)
Bacteria filer	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Compressed air manifold	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Anaesthetic gas scavenging manifold	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Vacuum air compressor	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(I)
Vacuum receiver /vessel	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(I)
Medical gas alarm zone panel	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Medical gas pipe	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Medical gas valve	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Medical gas outlet	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Mechanical Installation															
Gondola	100	100	100	100	200	200	-	-	200	200	300	300	300	500	V(M)

FS : Feasibility Study /Conceptual Design model TN : Tender model V : Field verification

SD : Sketch Design / Approval-in-Principle (AIP) model CON : Construction shop model V(I) : Field verification by visual inspection

DD : Detailed Design / Detailed Design Approval (DDA) model Ab : As-built model V(M) : Field verification by measured survey

MEP Object		Minim	um LOD	Require	ements a	nd Field	d Verifica	ation Me	thod for	as-buil	t BIM Mo	del Qua	lity Ass	urance	
	F	S	S	D	D	D	S	A	Т	N	CC	N		Ab	
	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	V
Fuel filling station	100	100	100	100	200	200	-	1	200	200	300	300	300	500	V(I)
Fuel tank	100	100	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Fuel pipe	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Fuel valve	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Car washing equipment	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Compressed air equipment	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Winch and pulley set	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Hoisting set	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Pneumatic Tube Transportation System															
Blower	100	100	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Diverter	100	100	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Reject station	100	100	100	100	200	200	-	-	200	200	300	300	300	500	V(I)

FS : Feasibility Study /Conceptual Design model TN : Tender model V : Field verification

SD : Sketch Design / Approval-in-Principle (AIP) model CON : Construction shop model V(I) : Field verification by visual inspection

DD : Detailed Design / Detailed Design Approval (DDA) model Ab : As-built model V(M) : Field verification by measured survey

MEP Object		Minim	um LOD	Require	ements a	nd Field	d Verifica	ation Me	thod for	as-buil	t BIM Mo	del Qua	lity Ass	urance	
	F	S	S	D	D	D	S	A	T	N	CC	ON		Ab	
	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	V
Empty chamber storage station	100	100	100	100	200	200	-	1	200	200	300	300	300	500	V(I)
Valve	100	100	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Transport station	100	100	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Transport tube	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Controller panel	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Automatic Refuse Collection System															
Refuse chute /pipe	100	100	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Compactor	100	100	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Exhauster	100	100	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Container	100	100	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Conveyor	100	100	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Refuse separator	100	100	100	100	200	200	-	-	200	200	300	300	300	500	V(I)

FS : Feasibility Study /Conceptual Design model TN : Tender model V : Field verification

SD : Sketch Design / Approval-in-Principle (AIP) model CON : Construction shop model V(I) : Field verification by visual inspection

DD : Detailed Design / Detailed Design Approval (DDA) model Ab : As-built model V(M) : Field verification by measured survey

MEP Object		Minim	um LOD	Require	ements a	nd Field	d Verifica	ation Me	thod for	as-buil	t BIM Mo	del Qua	lity Ass	urance	
	F	S	S	D	D	D	S	A	Т	N	CC	N		Ab	
	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	٧
Refuse disposal inlet	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Inlet/ discharge valve	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Diverter valve	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Air treatment device	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Air blower	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Plumbing Installation															
Water tank	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(I)
Water pump set	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(I)
Pneumatic tank	100	100	100	200	200	200	-	-	200	200	300	300	300	500	V(I)
Water pipe (>20mm dia.)	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Valve (>20mm dia.)	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Rainwater Harvesting Installation															

FS : Feasibility Study /Conceptual Design model TN : Tender model V : Field verification

SD : Sketch Design / Approval-in-Principle (AIP) model CON : Construction shop model V(I) : Field verification by visual inspection

DD : Detailed Design / Detailed Design Approval (DDA) model Ab : As-built model V(M) : Field verification by measured survey

MEP Object		Minim	um LOD	Require	ements a	nd Field	d Verifica	ation Me	thod for	as-buil	t BIM Mo	del Qua	lity Ass	urance	
	F	S	S	D	D	D	S	A	T	N	CC	N		Ab	
	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	V
Water tank	100	100	100	100	200	200	-	ı	200	200	300	300	300	500	V(I)
Sand filter	100	100	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Carbon filter	100	100	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Cartridge filter	100	100	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
UV chamber	100	100	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Pump set	100	100	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Pneumatic tank	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Water pipe (>20mm dia.)	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Valve (>20mm dia.)	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Drainage Installation															
Drainage pipe	-	-	100	100	200	200	200	200	200	200	300	300	300	500	V(I)
Manhole	-	-	100	100	200	200	200	200	200	200	300	300	300	500	V(I)

FS : Feasibility Study /Conceptual Design model TN : Tender model V : Field verification

SD : Sketch Design / Approval-in-Principle (AIP) model CON : Construction shop model V(I) : Field verification by visual inspection

DD : Detailed Design / Detailed Design Approval (DDA) model Ab : As-built model V(M) : Field verification by measured survey

MEP Object		Minim	um LOD	Require	ements a	nd Field	d Verifica	ation Me	thod for	as-buil	t BIM Mo	del Qua	lity Ass	urance	
	F	S	S	D	D	D	S	A	Т	N	CC	N		Ab	
	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	٧
Storm water inlet	1	1	100	100	200	200	200	200	200	200	300	300	300	500	V(I)
Floor drain inlet	-	-	100	100	200	200	200	200	200	200	300	300	300	500	V(I)
Sewage Pumping System															
Sewage pump	1	1	100	100	200	200	200	200	200	200	300	300	300	500	V(I)
Sewage pipe	-	-	100	100	200	200	200	200	200	200	300	300	300	500	V(I)
Sewage valve	1	1	100	100	200	200	200	200	200	200	300	300	300	500	V(I)
Greywater Recycling System															
Water tank	100	100	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Sand /Coarse filter	100	100	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Membrane bioreactor unit	100	100	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
UV chamber	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Pump set	100	100	100	100	200	200	-	1	200	200	300	300	300	500	V(I)

FS : Feasibility Study /Conceptual Design model TN : Tender model V : Field verification

SD : Sketch Design / Approval-in-Principle (AIP) model CON : Construction shop model V(I) : Field verification by visual inspection

DD : Detailed Design / Detailed Design Approval (DDA) model Ab : As-built model V(M) : Field verification by measured survey

MEP Object		Minim	um LOD	Require	ements a	nd Field	d Verifica	ation Me	thod for	as-buil	t BIM Mo	del Qua	lity Ass	urance	
	FS SD		D	DD		SA		TN		CON		Ab			
	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	٧
Pneumatic tank	-	ı	100	100	200	200	-	ı	200	200	300	300	300	500	V(I)
Water pipe	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Valve	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Sewage Water Treatment System															
Water tank	100	100	100	100	200	200	-	ı	200	200	300	300	300	500	V(I)
Sand /Coarse filter	100	100	100	100	200	200	-	ı	200	200	300	300	300	500	V(I)
Membrane bioreactor unit	100	100	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
UV chamber	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Pump set	100	100	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Pneumatic tank	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Water pipe	-	-	100	100	200	200	-	-	200	200	300	300	300	500	V(I)
Valve	-	ı	100	100	200	200	-	-	200	200	300	300	300	500	V(I)

FS : Feasibility Study /Conceptual Design model TN : Tender model V : Field verification

SD : Sketch Design / Approval-in-Principle (AIP) model CON : Construction shop model V(I) : Field verification by visual inspection

DD : Detailed Design / Detailed Design Approval (DDA) model Ab : As-built model V(M) : Field verification by measured survey

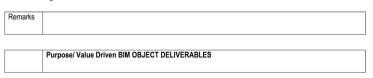
MEP Object	Minimum LOD Requirements and Field Verification Method for as-built BIM Model Quality Assurance														
	F	S	S	D	D	D	S	A	Т	N	CC	ON		Ab	
	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	LOD-G	LOD-I	٧
Fixing and Maintenance Accessories															
Hanger	-	-	-	-	-	-	-	-	-	-	300	300	300	500	V(I)
Spring Isolation Unit	-	ı	-	ı	ı	ı	-	ı	-	-	300	300	300	500	V(I)
Hoisting beam and chain block	-	ı	100	100	200	200	-	ı	200	200	300	300	300	500	V(I)
Hoisting eye	-	1	100	100	200	200	-	-	200	200	300	300	300	500	V(I)

System /Installation	System	Present	tation (2D)		Present	ation (3	D)		
	Code	Lineweight	Linetype	RED	GREEN	BULE	Color		
							Palette		
HVAC System									
Primary Air Duct	PAD	0.35	Continuous	0	255	255			
Exhaust Air Duct	EAD	0.35	Continuous	0	255	0			
Fresh Air Duct	FAD	0.35	Continuous	0	0	255			
Supply Air Duct	SAD	0.35	Continuous	255	0	0			
Return Air Duct	RAD	0.35	Continuous	255	0	255			
Transfer Air Duct	TAD	0.35	Continuous	0	128	255			
Smoke Extraction Duct	SED	0.35	Continuous	128	128	0			
Make Up Air Duct	MAD	0.35	Continuous	192	192	192			
Staircase Pressurization Duct	SPD	0.35	Continuous	192	192	192			
Condensate Drain Pipe	CDP	0.18	Dashed2	255	128	0			
Chilled Water Return Pipe	CHWR	0.25	Dashdot2	0	255	0			
Chilled Water Supply Pipe	CHWS	0.25	Dashdot2	0	0	255			
Condensing Water Supply Pipe	CDWS	0.25	Border2	0	128	64			
Condensing Water Return Pipe	CDWR	0.25	Border2	0	128	255			
Chemical Dosing Pipe	CHDP	0.25	Hidden	192	192	192			
Make-up Water Pipe	MWP	0.25	Continuous	192	192	192			

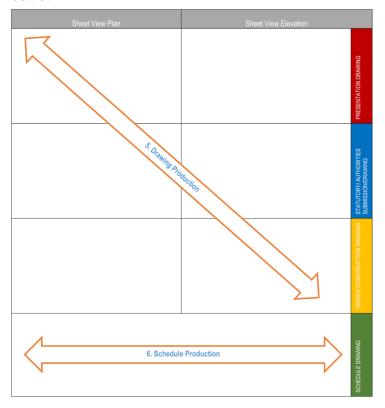
System /Installation	System	Present	tation (2D)		Present	ation (3	D)	
	Code	Lineweight	Linetype	RED	GREEN	BULE	Color	
							Palette	
Heating Hot Water Supply Pipe	HHSP	0.25	Phantom2	128	0	0		
Heating Hot Water Return Pipe	HHRP	0.25	Phantom2	255	128	64		
Floatical localistics								
Electrical Installation				_	_	_		
Low Voltage Electricity Supply	ES-LV	0.35	Divide2	0	255	0		
High Voltage Electricity Supply	ES-HV	0.35	Divide2	0	255	0		
Normal Power	TR-N	0.35	Dashdot2	0	255	0		
Emergency Power	TR-E	0.35	Continuous	255	0	64		
Building Management System	BMS	0.35	Continuous	0	255	0		
Uninterruptible Power supply	UPS	0.35	Continuous	128	64	64		
Lighting General	LTG	0.35	Center2	0	255	0		
LV Switchboards	LVS	0.35	Divide2	128	128	0		
Emergency Generator	EMG	0.35	Continuous	255	0	64		
Fire Service Installation								
Sprinkler Pipe	SPR	0.25	Continuous	255	0	0		
Hose Reel / Fire Hydrant Pipe	FSP	0.25	Continuous	255	0	0		

System /Installation	System	Present	Presentation (2D)		Present	ation (3D	D)	
	Code	Lineweight	Linetype	RED	GREEN	BULE	Color	
							Palette	
Automatic Fire Detection and Alarm System Pipe	AFA	0.25	Divide2	255	0	0		
Gas Suppression System Pipe	GSS	0.25	Continuous	255	0	0		
Burglar Alarm and Security Installation								
Access Control System	ACS	0.25	Continuous	128	255	255		
Burglar Alarm System	BAS	0.25	Continuous	128	255	255		
CCTV and Intercom System	CCTVI	0.25	Continuous	255	153	102		
Smart Card System	SCS	0.25	Continuous	128	255	255		
Call Alarm System	CAS	0.35	Center2	128	255	255		
Videophone System	VPS	0.25	Continuous	128	255	255		
Keypad Lock System	KLS	0.25	Continuous	128	255	255		
Drop-arm Barrier	DAB	0.25	Continuous	128	255	255		
Electronic Systems								
Broadcast Reception System	BRI	0.35	Continuous	128	255	255		
Radar and Navigation System	RNS	0.25	Continuous	0	153	0		
Microwave Link System	MLS	0.25	Continuous	0	64	64		
Timing & Display System	TDS	0.25	Continuous	128	128	128		

System /Installation	System	Presen	tation (2D)		Present	ation (3D	D)		
	Code	Lineweight	Linetype	RED	GREEN	BULE	Color		
							Palette		
Audio Video System	AV	0.25	Continuous	0	128	128			
Audio System	AUS	0.25	Continuous	102	102	51			
Radio System	RS	0.25	Continuous	204	153	255			
Lift and Escalator Installation									
Lift / Escalator	LAE	0.25	Continuous	128	0	128			
Swimming Pool Water Treatment System									
Filtration Plant Pipe	FP	0.25	Continuous	0	128	0			
Return Pipe	RP	0.25	Continuous	0	128	128			
Overflow Pipe	OP	0.25	Continuous	0	128	0			
Supply Pipe	SP	0.25	Continuous	0	128	255			
	Γ	1							
Plumbing Installation									
Cleansing Water Pipe	CLWP	0.25	Dash	0	0	255			
Cold Water Pipe	CWP	0.25	Long Dash Dash	0	0	255			
Flushing Water Pipe	FLWP	0.25	Center	255	255	0			
Fresh Water Pipe	FWP	0.25	Continuous	0	255	0			
Hot Water Supply Pipe	HWSP	0.25	Dash dot	255	0	0			


Building Services Branch, ArchSD BIM Guide for Building Services Installation (Ver2.0) Author: BS BIMSSG

First Issue Date : June 2018 Current Issue Date : June 2021


System /Installation	System	Presen	tation (2D)		Present	ation (3D	D)	
	Code	Lineweight	Linetype	RED	GREEN	BULE	Color	
							Palette	
Hot Water Return Pipe	HWRP	0.25	Long Dash dot	255	128	128		
Irrigation Water Pipe	IRWP	0.25	Dash dot dot dot	0	255	255		
Grey Water Pipe	GWP	0.25	Continuous	0	128	255		
Steam Pipe	BLR	0.35	Continuous	255	255	0		
Drainage Installation								
Waste Pipe	WP	0.35	Divide2	128	128	0		
Soil and Waste Pipe	SWP	0.35	Center2	128	0	0		
Vent Pipe	VP	0.35	Hidden	0	128	255		
Rainwater Pipe	RWP	0.35	Phantom2	0	255	255		
Pumped Soil & Waste Pipe	PSWP	0.35	Center2	64	0	0		
Pumped Waste Pipe	PWP	0.35	Divide2	64	64	0		
Pumped Rainwater Pipe	PRWP	0.35	Phantom2	0	128	128		

Annex C – Sample Format of BIM Object Sheet

OUTPUT

